Background: Anisakis spp. are nematode parasites found in a wide range of marine organisms. Human beings may accidentally become infected, showing the symptoms of anisakiasis and allergic responses. There has been evidence of increased intestinal permeability in A. simplex-sensitized subjects and that specific IgE titres increase in some allergic patients when fishery products are re-introduced into their diet. The aims of this work were to study the effect of A. simplex crude extract on the intestinal integrity and permeability by using Caco-2 cell monolayer. To analyse the capacity of Ani s 4 allergen to cross the epithelial barrier.
Methodology/principal Findings: Cellular bioenergetics, transepithelial electrical resistance, viability, permeability, reactive oxygen species generation and immunofluorescent staining of tight junction proteins were analysed. A. simplex crude extract compromises the Caco-2 cell monolayer integrity in a dose-dependent manner. This effect is detected at 1 hour of culture and integrity is recovered after 24 hours of culture. The epithelial barrier disruption is accompanied by an increase in paracellular permeability and reactive oxygen species production and by a delocalization of occludin and zonula occludens-1. Finally, Ani s 4, a thermostable and resistant to digestion allergen with cystatin activity, is able to cross the epithelial barrier in Caco-2 monolayer and reach a cumulative mean percentage of 22.7% of total concentration in the basolateral side after 24 hours of culture.
Conclusions/significance: Our results demonstrate that A. simplex induces an early and reversible alteration of integrity and permeability of Caco-2 cell monolayer and that an underlying mechanism of this effect would involve the oxidative stress and disruption of epithelial tight junctions. Additionally, it has been shown that Ani s 4 allergen is able to cross the epithelial barrier. These findings could explain the increased intestinal permeability observed in Anisakis-sensitized patients, the changes over time in IgE sensitization to A. simplex allergens, and the specific IgE persistence in Anisakis allergy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7365482 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0008462 | DOI Listing |
Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.
View Article and Find Full Text PDFTissue-resident memory T (T) cells are crucial components of the immune system that provide rapid, localized responses to recurrent pathogens at mucosal and epithelial barriers. Unlike circulating memory T cells, T cells are located within peripheral tissues, and they play vital roles in antiviral, antibacterial, and antitumor immunity. Their unique retention and activation mechanisms, including interactions with local epithelial cells and the expression of adhesion molecules, enable their persistence and immediate functionality in diverse tissues.
View Article and Find Full Text PDFThis study describes a complex human in vitro model for evaluating anti-inflammatory drug response in the alveoli that may contribute to the reduction of animal testing in the pre-clinical stage of drug development. The model is based on the human alveolar epithelial cell line Arlo co-cultured with macrophages differentiated from the THP-1 cell line, creating a physiological biological microenvironment. To mimic the three-dimensional architecture and dynamic expansion and relaxation of the air-blood-barrier, they are grown on a stretchable microphysiological lung-on-chip.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong, 266042, China.
Ulcerative colitis (UC) is a chronic gastrointestinal inflammatory disorder with rising prevalence. Due to the recurrent and difficult-to-treat nature of UC symptoms, current pharmacological treatments fail to meet patients' expectations. This study presents a machine learning-assisted high-throughput screening strategy to expedite the discovery of efficient nanozymes for UC treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!