Protein immobilization has gained high interest in recent years for its valuable applications in life sciences involving drug delivery and protein arrays. Herein, we combine sortase-mediated protein immobilization with the versatility of magnetic nanoparticles and a sensitive GFP-based quantification system. Using this method, we successfully immobilized and quantified the amount of coupled enzymes by fluorescence spectroscopy and assessed their activity by kinetic measurements. We show that sortase-mediated coupling of enzymes enables preparation of biological samples with a high demand of purity as demonstrated by single-molecule FRET. Here, we report that sortase-mediated protein ligation allows both N- and C-terminal site-specific protein immobilization. Additionally, we demonstrate that sortase-mediated protein immobilization is suitable for direct protein immobilization from complex lysates. Direct immobilization from lysate allows study of enzyme functionality without the need of time-consuming enzyme purification, while magnetic nanoparticles permit easy addition and removal of coupled enzymes to and from a reaction mixture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.0c00322 | DOI Listing |
Chemistry
January 2025
RIKEN: Rikagaku Kenkyujo, Cluster for Pioneering Research, Hirosawa 2-1, 351-0198, Wako, JAPAN.
Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Instituto de Salud Carlos III, Madrid, Madrid, Spain
Background: Alzheimer’s disease (AD) is the most common neurodegenerative disease worldwide and the leading cause of dementia in the elderly. New approaches to study AD are still needed to identify and validate blood‐based diagnostic biomarkers that could be useful for its early diagnosis. Circulating autoantibodies (AAbs) and their target proteins (autoantigens) are promising candidate biomarkers to aid in AD early diagnosis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
SPEAR BIO INC, Woburn, MA, USA
Background: Cutting‐edge ultrasensitive immunoassay platforms have unveiled the potential of blood‐based biomarkers, offering detection at low fg/mL levels for early neurodegenerative disorder prognosis, screening, and therapeutic monitoring. Current immunoassays, such as single molecule array (SIMOA) and mesoscale multi‐array (MSD), face limited adoption due to their reliance on specialized equipment. Additionally, they require immobilization of probe reagents and a washing process, demanding tens of thousands of proteins to achieve the Limit of Detection (LOD), leading to the requirement of high sample volume and high affinity antibodies for fg/mL sensitivity.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmacy, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China.
Choerospondias axillaris is a medicinal plant used for treating coronary heart disease (CHD) due to its broad spectrum of anti-inflammatory activities. Cyclooxygenase 2 (COX-2) and lipoxygenase 5 (5-LOX) were immobilized on magnetic nanoparticles for selective ligand-extraction of these two enzymes present in C. axillaris.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!