Migration of Charge-Transfer States at Organic Semiconductor Heterojunctions.

ACS Appl Mater Interfaces

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.

Published: July 2020

Charge-transfer (CT) states formed at organic donor-acceptor (D-A) semiconductor heterojunctions play a critical role in optoelectronic devices. While mobile, their migration has not been extensively characterized. In addition, the factors impacting the CT state diffusion length () have not been elucidated. Here, CT state is measured by using photoluminescence quenching for several D-A mixtures, with migration occurring along the bulk heterojunction. All D-A pairings considered yield a similar ∼ 5 nm in equal mixtures despite variations in the CT state energy and the constituent molecular structures. The CT state varies strongly with mixture composition and is well-correlated to the slowest charge carrier mobility, suggesting a direct method to tune CT state transport. These findings may be applied to elucidate the role of CT state migration in organic photovoltaic and light-emitting devices as well as to broadly explain the transport of interfacial excited states along inorganic and hybrid organic-inorganic heterojunctions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c07112DOI Listing

Publication Analysis

Top Keywords

charge-transfer states
8
semiconductor heterojunctions
8
state
6
migration
4
migration charge-transfer
4
states organic
4
organic semiconductor
4
heterojunctions charge-transfer
4
states formed
4
formed organic
4

Similar Publications

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

The design of cathode/electrolyte interfaces in high-energy density Li-ion batteries is critical to protect the surface against undesirable oxygen release from the cathodes when batteries are charged to high voltage. However, the involvement of the engineered interface in the cationic and anionic redox reactions associated with (de-)lithiation is often ignored, mostly due to the difficulty to separate these processes from chemical/catalytic reactions at the cathode/electrolyte interface. Here, a new electron energy band diagrams concept is developed that includes the examination of the electrochemical- and ionization- potentials evolution upon batteries cycling.

View Article and Find Full Text PDF

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

December 2024

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!