Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Optical imaging through inhomogeneous media based on autocorrelations suffers from a limited field of view (FOV), since the optical memory effect (ME) of a scattering medium has its inherent angular extent. Here we successfully expand the angular ME range by exploiting a spatial filtering technique to select low-frequency components, mainly ballistic light and less scattered light, thereby increasing the FOV of the speckle autocorrelation imaging. Both a simulation and experimental verifications are presented. This technique, which is not limited to the discussed 4f structure, can provide a guideline for the design of an optical system to image through scattering media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.005997 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!