A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optical Pliers: Micrometer-Scale, Light-Driven Tools Grown on Optical Fibers. | LitMetric

Optical Pliers: Micrometer-Scale, Light-Driven Tools Grown on Optical Fibers.

Adv Mater

Photonic Nanostructure Facility, Faculty of Physics, University of Warsaw, ul. Pasteura 5, Warsaw, 02-093, Poland.

Published: August 2020

The ability to grip and handle small objects, from sub-millimeter electronic components to single-micrometer living cells, is vital for numerous ever-shrinking technologies. Mechanical grippers, powered by electric, pneumatic, hydraulic or piezoelectric servos, are well suited for the job at larger scales, but their complexity and need for force transmission prevent their miniaturization and remote control in tight spaces. Using liquid crystal elastomer microstructures that can change shape quickly and reversibly in response to light, a light-powered gripping tool-optical pliers-is built by growing two bending jaws on the tips of optical fibers. By delivering UV light to trigger polymerization via a micrometer-size fiber core, structures of similar size can be made without resorting to any microfabrication technology, such as laser photolithography. The tool is operated using visible light energy supplied through the fibers, with no force transmission. The elastomer growth technique readily offers micrometer-scale, remotely controlled functional structures with different modes of actuation as building blocks for the microtoolbox.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202002779DOI Listing

Publication Analysis

Top Keywords

optical fibers
8
force transmission
8
optical pliers
4
pliers micrometer-scale
4
micrometer-scale light-driven
4
light-driven tools
4
tools grown
4
grown optical
4
fibers ability
4
ability grip
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!