The development of an efficient transformation system is essential to enrich the genetic understanding of Trichoderma atroviride. To acquire an additional homologous selectable marker, uracil auxotrophic mutants were generated. First, the pyr4 gene encoding OMP decarboxylase was replaced by the hph marker gene, encoding a hygromycin phosphotransferase. Then, uracil auxotrophs were employed to determine that 5 mM uracil restores their growth and conidia production, and 1 mg ml is the lethal dose of 5-fluoroorotic acid in T. atroviride. Subsequently, uracil auxotrophic strains, free of a drug-selectable marker, were selected by 5-fluoroorotic acid resistance. Two different deletions in pyr4 were mapped in four auxotrophs, encoding a protein with frameshifts at the 310 and 335 amino acids in their COOH-terminal. Six auxotrophs did not have changes in the pyr4 ORF even though a specific cassette to delete the pyr4 was used, suggesting that 5-FOA could have mutagenic activity. The Ura1 strain was selected as a genetic background to knock out the MAPKK Pbs2, MAPK Tmk3, and the blue light receptors Blr1/Blr2, using a short version of pyr4 as a homologous marker. The ∆tmk3 and ∆pbs2 mutants selected with pyr4 or hph marker were phenotypically identical, highly sensitive to different stressors, and affected in photoconidiation. The ∆blr1 and ∆blr2 mutants were not responsive to light, and complementation of uracil biosynthesis did not interfere in the expression of blu1, grg2, phr1, and env1 genes upregulated by blue light. Overall, uracil metabolism can be used as a tool for genetic manipulation in T. atroviride.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7688867PMC
http://dx.doi.org/10.1007/s42770-020-00329-7DOI Listing

Publication Analysis

Top Keywords

efficient transformation
8
transformation system
8
trichoderma atroviride
8
pyr4 gene
8
selectable marker
8
uracil auxotrophic
8
gene encoding
8
hph marker
8
5-fluoroorotic acid
8
blue light
8

Similar Publications

Optimized convolutional neural network using African vulture optimization algorithm for the detection of exons.

Sci Rep

January 2025

Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.

View Article and Find Full Text PDF

This study presents a very thin wideband linear polarization converter in transmission mode with near-unity conversion efficiency. The suggested converter consists of a periodic array on a single-layer substrate, two metallic layers and six vias. Metallic vias connect the upper and lower layers of the construction.

View Article and Find Full Text PDF

Although biocatalysis offers complementary or alternative approaches to traditional synthetic methods, the limited range of available enzymatic reactions currently poses challenges in synthesizing a diverse array of desired compounds. Consequently, there is a significant demand for developing novel biocatalytic processes to enable reactions that were previously unattainable. Herein, we report the discovery and subsequent protein engineering of a unique halohydrin dehalogenase to develop a biocatalytic platform for enantioselective formation and ring-opening of oxetanes.

View Article and Find Full Text PDF

Cas12a is a next-generation gene editing tool that enables multiplexed gene targeting. Here, we present a mouse model that constitutively expresses enhanced Acidaminococcus sp. Cas12a (enAsCas12a) linked to an mCherry fluorescent reporter.

View Article and Find Full Text PDF

Pesticide transformation products: a potential new source of interest for drinking water.

Environ Sci Pollut Res Int

January 2025

ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France.

Pesticide transformation products (TPs) are frequently quantified in aquatic systems, including surface and groundwater. They often present higher polarity than parent compounds, are less volatile and less biodegradable and are therefore more mobile and persistent. These properties make them compounds of main interest in water resources and drinking water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!