Placenta‑derived exosomes play an important role in cellular communication both in the mother and the fetus. Their concentration and composition are altered in several pregnancy disorders, such as gestational diabetes mellitus (GDM). The isolation and characterization of placental exosomes from serum, plasma and tissues from patients with GDM have been previously described; however, to the best of our knowledge, to date, there is no study available on placental exosomes isolated from urine of patients with GDM. In the present study, placental exosomes were purified from urine the 1st, 2nd and 3rd trimester of gestation. Placental exosomes were characterized by transmission electron microscopy in cryogenic mode and by western blot analysis, confirming the presence of exosomal vesicles. The expression profile of five microRNAs (miR‑516‑5p, miR‑517‑3p, miR‑518‑5p, miR‑222‑3p and miR‑16‑5p) was determined by RT‑qPCR. In healthy pregnant women, the expression of the miRNAs increased across gestation, apart from miR‑516‑5p, which was not expressed at the 2nd trimester. All the miRNAs examined were downregulated in patients with GDM at the 3rd trimester of gestation. The downregulated miRNAs affected several metabolic pathways closely associated with the pathophysiology of GDM. This provides further evidence of the regulatory role of miRNAs in the GDM. This also suggests that the of urinary exosomes may be an excellent source of biomarkers and therapeutic targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307810 | PMC |
http://dx.doi.org/10.3892/ijmm.2020.4626 | DOI Listing |
Front Immunol
December 2024
Barcelona Endothelium Team, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
Background: Preeclampsia (PE) is a pregnancy complication characterized by hypertension, proteinuria, endothelial dysfunction, and complement dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in maternal-fetal communication, might contribute to PE pathogenesis. Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other complement-mediated pathologies, and their contribution in PE remains unexplored.
View Article and Find Full Text PDFExp Cell Res
December 2024
Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia; University of Melbourne Department of Obstetrics and Gynaecology and Newborn Health, Royal Women's Hospital, Parkville, VIC, 3052, Australia. Electronic address:
Increasing evidence shows extracellular vesicles (EVs) are primarily responsible for the beneficial effects of cell-based therapies. EVs derived from mesenchymal stromal cells (MSCs) show promise as a source of EVs for cell-free therapies. The human placental fetal-maternal interface is a rich and abundant source of MSCs from which EVs can be isolated.
View Article and Find Full Text PDFRegen Ther
March 2025
Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
Peripheral nerve damage continues to be a significant challenge in the field of medicine, with no currently available effective treatment. Currently, we investigated the beneficial effects of human placenta mesenchymal stem cells (PMSCs)- derived exosomes along with hyperbaric oxygen therapy (HBOT) in a sciatic nerve injury model. Seventy-five male mature Sprague-Dawley rats were allocated into five equal groups.
View Article and Find Full Text PDFJ Reprod Dev
December 2024
Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
Insulin-like growth factor 2 (IGF2) is essential for cell growth and differentiation and functions through the IGF2 receptor (IGF2R) to regulate embryonic and placental development. Exosomes that are synthesized and released from cells and play important roles in embryogenesis and placental development rely on the IGF2R for sorting and transport. However, the role of the imprinted Igf2-Igr2r axis and exosomes in the co-regulation of early placental development remains unknown.
View Article and Find Full Text PDFCells
November 2024
Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA.
In mice, the fetal brain is dependent upon the placenta for factors that guide its early development. This linkage between the two organs has given rise to the term, the placenta-brain axis. A similar interrelationship between the two organs may exist in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!