This study aimed to evaluate passive immunity transfer in healthy buffalo calves. Colostrum samples from heifers (without previous calving) and primiparous and pluriparous dams and blood samples from their offspring were obtained at calving, before colostrum intake, and at 24, 48, and 72 h after calving for determination of serum activities of gammaglutamyltransferase and alkaline phosphatase and serum concentrations of total protein (TP), immunoglobulin A (IgA) and IgG, and lactoferrin. The results were analyzed as repeated measures, and differences were considered statistically significant at ≤ 0.05. Considering that the buffalo calves were born hypogammaglobulinemic (4.23 ± 0.33 mg/ml) and, at 24 h, the mean serum concentration of IgG was 34.5 ± 1.48 mg/ml, passive immunity transfer was successful. Moreover, colostrum IgG concentrations at 0 h were correlated with serum IgG concentrations at 24 h in buffalo calves. Additionally, TP concentrations were highly correlated with IgG in both colostrum at calving and blood in calves at 24 h. TP is recommended as a reliable indirect parameter to evaluate both colostrum quality and passive immunity transfer in buffalo calves.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7313533 | PMC |
http://dx.doi.org/10.3389/fvets.2020.00247 | DOI Listing |
J Antimicrob Chemother
January 2025
Division of Infectious Diseases, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, University of Cologne, Kerpener Str. 62, 50939 Cologne, Germany.
Background: Persistent COVID-19 (pCOVID-19) in immunocompromised patients is characterized by unspecific symptoms and pulmonary infiltrates due to ongoing severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication. Treatment options remain unclear, leading to different approaches, including combination therapy and extended durations. The purpose of this study was to assess the efficacy and safety of antiviral therapies for pCOVID-19 in immunocompromised patients since the Omicron surge.
View Article and Find Full Text PDFVet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFNutrients
December 2024
National Institute of Women, Children and Adolescents Health Fernandes Figueira-Fiocruz, Rio de Janeiro 22250-020, Brazil.
Background/objectives: This study aimed to determine the percentage and duration of neutralizing antibodies against the Omicron variant in human milk after vaccination against SARS-CoV-2, considering the three different vaccine technologies approved in Brazil.
Methods: A cross-sectional study was conducted with lactating women who received the complete vaccination cycle with available vaccines (AstraZeneca, Pfizer, CoronaVac, and Janssen). The participants resided in Rio de Janeiro, and samples were collected from April to October 2022.
JMIR Med Educ
January 2025
Department of Medical Education, University of Idaho, 875 Perimeter Drive MS 4061, WWAMI Medical Education, Moscow, ID, 83844-9803, United States, 1 5092090908.
Background: Medical students often struggle to engage with and retain complex pharmacology topics during their preclinical education. Traditional teaching methods can lead to passive learning and poor long-term retention of critical concepts.
Objective: This study aims to enhance the teaching of clinical pharmacology in medical school by using a multimodal generative artificial intelligence (genAI) approach to create compelling, cinematic clinical narratives (CCNs).
Vet Clin North Am Food Anim Pract
January 2025
Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA.
Respiratory disease in cattle and small ruminants is caused by various factors, including inadequate biosecurity and biocontainment. Biosecurity and biocontainment depend on good husbandry. Testing on arrival and quarantining for 42 to 56 days could improve biosecurity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!