Marrow and peripheral blood cells from nine children with juvenile chronic granulocytic leukemia (JCGL) demonstrated intense (94 +/- 16% maximum) spontaneous granulocyte/macrophage colony growth but cells from five children with the adult variety of CGL did not. This unusual pattern of colony growth depended upon a stimulatory protein(s) produced by mononuclear phagocytes. No GM-CSA activity was found in any chromatofocused fraction of JCGL monocyte-conditioned media but an activity that induced GM-CSA in umbilical vein endothelial cells was detected at pI 6.9-7.2. Moreover, the CSA-inducing monokine was neutralized by an anti-IL-1 antibody in vitro and, in the one case so tested, the same antibody also inhibited "spontaneous" colony growth. Therefore granulocyte/macrophage colony growth in JCGL is characteristically abnormal and distinguishes JCGL from the adult form of the disease. This abnormality depends upon the production, by mononuclear phagocytes, of IL-1 which, in turn, stimulates the release of high levels of colony stimulating activity by other cells. The high proliferative activity of CFU-GM we found in JCGL patients, and the high levels of GM-CSA found in their serum are compatible with the view that the in vitro abnormality reflects a similar abnormality in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC442701PMC
http://dx.doi.org/10.1172/JCI113748DOI Listing

Publication Analysis

Top Keywords

colony growth
16
chronic granulocytic
8
granulocytic leukemia
8
cells children
8
granulocyte/macrophage colony
8
mononuclear phagocytes
8
high levels
8
jcgl
5
colony
5
interleukin 1-dependent
4

Similar Publications

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

Validation of an automated quality control method to test sterility of two advanced therapy medicinal products: Mesenchymal stromal cells and their extracellular vesicles.

Hematol Transfus Cell Ther

November 2024

Hospital São Rafael, Salvador, Bahia, Brazil; Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador, Bahia, Brazil; Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil. Electronic address:

Mesenchymal stromal cells are multipotent cells present in various tissues that are widely studied for relevant therapeutic potential due to their paracrine immunomodulatory and tissue regenerating properties. Many mesenchymal stromal cell-based products are under investigation for the treatment of different clinical conditions. Recently, the therapeutic potential of the extracellular vesicles released by these cells has been under focus, with emphasis on clinical translation.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) accounts for the majority of primary liver cancers and is associated with poor survival. Formosanin C (FC) is a diosgenin glycoside extracted from Paris polyphylla. Therapeutic effects of FC against HCC malignancies remain unclear.

View Article and Find Full Text PDF

Anti-Biofilm Agents to Overcome Antibiotic Resistance.

Pharmaceuticals (Basel)

January 2025

AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France.

is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients.

View Article and Find Full Text PDF

Eicosapentaenoic Acid and Docosahexaenoic Acid as an Antimicrobial Agent in Orthopedics-An In Vitro Study About the Race for Surface.

Pathogens

January 2025

Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.

Background: The burden of prosthetic joint infection in combination with antibiotic-resistant bacterial strains is a rising dilemma for patients experiencing total joint replacements. Around 0.8-2% of patients experience prosthetic joint infections, while up to 21% of patients are considered fatal cases after 5 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!