In this study, anaerobic digestion of nitrogen-rich chicken (egg-laying hen) manure at different trace element (TE) mix doses and different total ammonia nitrogen (TAN) concentrations was investigated in batch digestion experiments. With respect to nonsupplemented TE sets, addition of TE mixture containing 1 mg/L Ni, 1 mg/L Co, 0.2 mg/L Mo, 0.2 mg/L Se, 0.2 mg/L W, and 5 mg/L Fe at TAN concentrations of 3000 mg/L and 4000 mg/L, cumulative CH production and CH production rate improved by 7-8% and 5-6%, respectively. The results revealed that at a very high TAN concentration of 6000 mg/L, the effect of TE addition was significantly high and the cumulative CH production and production rate were increased by 20 and 39.5%, respectively. Therefore, it is concluded that at elevated TAN concentrations the CH production that was stimulated by TE supplementation was presumably occurred through syntrophic acetate oxidation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999301PMC
http://dx.doi.org/10.1002/elsc.201700201DOI Listing

Publication Analysis

Top Keywords

mg/l mg/l
20
tan concentrations
12
anaerobic digestion
8
trace element
8
mg/l
8
cumulative production
8
production production
8
production rate
8
production
5
digestion chicken
4

Similar Publications

Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway.

Environ Res

January 2025

State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:

Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.

View Article and Find Full Text PDF

Microbial synergy mechanism of hydrogen flux influence on hydrogen-based partial denitrification coupled with anammox in a membrane biofilm reactor.

Environ Res

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.

View Article and Find Full Text PDF

Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.

View Article and Find Full Text PDF

Sub-lethal effects of innovative anti-corrosion nanoadditives on the marine bivalve Ruditapes philippinarum.

Environ Pollut

January 2025

CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.

Corrosion significantly affects the maritime industry. To address this issue, corrosion inhibitors are incorporated into polymeric coatings. However, some state-of-the-art inhibitors are toxic, prone to spontaneous leaching, and interact with coating components.

View Article and Find Full Text PDF

Nitric oxide release as a defense mechanism in marine microalgae against microplastic-induced stress.

Environ Pollut

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!