A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga . | LitMetric

Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all chemotherapy drugs currently on the market cause serious side effects. Fortunately, several studies have shown that some non-toxic biological macromolecules, including algal polysaccharides, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Polysaccharides are characteristic secondary metabolites of many algae. The efficacy of polysaccharides on the normal and cancer cells is not well investigated, but our investigations proved a cell specific effect of a newly isolated extracellular polysaccharide from the red microalga . The investigated substance was composed of xylose:glucose and galactose:manose:rhamnose in a molar ratio of 1:0.52:0.44:0.31. Reversible electroporation has been exploited to increase the transport through the plasma membrane into the tested breast cancer tumor cells MCF-7 and MDA-MB231. Application of 75 µg/mL polysaccharide in combination with 200 V/cm electroporation induced 40% decrease in viability of MDA-MB231 cells and changes in cell morphology while control cells (MCF10A) remained with normal morphology and kept vitality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999067PMC
http://dx.doi.org/10.1002/elsc.201900019DOI Listing

Publication Analysis

Top Keywords

chemotherapy drugs
8
characterization potential
4
potential antitumor
4
antitumor heteropolysaccharide
4
heteropolysaccharide produced
4
produced red
4
red alga
4
alga account
4
account rising
4
rising trend
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!