Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The current political situation imposes high demands on the economic feasibility of biogas plants. High prizes for biogas substrates and a trend to reduced feed-in tariffs generated an increasing need to optimize substrate exploitation and operation conditions. This includes a comprehensive and reliable biogas process monitoring. For that purpose a number of different process monitoring methods like CH production rate, FOS/TAC (ratio of organic acid/total inorganic carbon alkalinity), pH or (auto)fluorescence are successfully applied. This paper will evaluate whether the surface charge - a parameter, which has not been in use so far - might also be suitable for biogas process monitoring. Since it is known that the surface charge is correlated with the adherence and floc formation capability of microbial cells, a change in surface charge might also reflect a change in the biogas process efficiency, or vice versa. To test this hypothesis, samples for the investigations were taken from a continuously stirred laboratory-scale tank biogas reactor with continuously increased substrate load. The impact of the load change was measured with both, surface charge and a number of more established monitoring parameters as given above. It was found that the "surface charge" reflected well short-term process changes (within hours) caused by an increasing substrate load in the reactor, though the highest short-term monitoring sensitivity was obtained with the "FOS/TAC" monitoring. Different from other monitoring parameters like CH, pH, or FOS/TAC the value of the parameter "surface charge" decreased with every feeding, eventually indicating a continuous deterioration of the biogas process conditions. Surface charge might therefore be of particular use as a complementary tool especially for the long-term monitoring of biogas process conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999476 | PMC |
http://dx.doi.org/10.1002/elsc.201700164 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!