Surfactants play a very important role in laundry and household cleaning products ingredients. In this research, the application of lipopeptide biosurfactants, produced by SPB1, in the formulation of a washing powder was investigated. The SPB1 biosurfactant was mixed with sodium tripolyphosphate as a builder and sodium sulfate as filler. The efficiency of the formulated detergent composition with different washing conditions to remove a stain from cotton fabric was examined. The results showed that the formulated detergent was effective in oil removal, with optimal washing conditions of pH, temperature, striate and time of washing system of 7, 65°C, 1000 RPM and 60 min, respectively. A comparative study of different detergent compositions (biosurfactant-based detergent, combined biosurfactant-commercial detergent, and a commercial detergent) for the removal of oil and tea stains, proved that the bio-scouring was more effective (>75%) in terms of the stain removal than the commercial powders (<60%). Moreover, the results demonstrated that the biosurfactant acts additively with a commercial detergent and enhances their performance from 33 to 45% in removing oil stain and from 57 to 64% in removing tea stain. As a conclusion, in addition to the low toxicity and the high biodegradability of the microbial biosurfactants, the results of this study have shown that the future use of this lipopeptide biosurfactant as laundry detergent additive is highly promising.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999556PMC
http://dx.doi.org/10.1002/elsc.201700152DOI Listing

Publication Analysis

Top Keywords

detergent
8
study detergent
8
formulated detergent
8
washing conditions
8
washing
5
potential application
4
application spb1
4
spb1 biosurfactants
4
biosurfactants laundry
4
laundry detergent
4

Similar Publications

Protein supply to ruminants relies mainly on the flow of microbial crude protein (MCP) from the rumen, which is commonly assumed to primarily depend on energy supply. This study evaluated this assumption with recent data and tested if ruminally fermented organic matter (FOM) was a better predictor of MCP flow than total-tract digestible organic matter (DOM) and if more variables could improve the prediction of MCP flow. A previously published data set was extended by additional studies resulting in a data set of 139 studies including 407 treatment means, typical to Central European rations.

View Article and Find Full Text PDF

We have used multiple regression analyses to develop a series of metabolisable energy (ME) prediction equations from chemical analyses of pig diets that can be extended to murine diets. We compiled four datasets from an extensive range of published metabolism studies with grower/finisher and adult pigs. The analytes in the datasets were increasingly complex, comprising: 1.

View Article and Find Full Text PDF

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase.

Int J Biol Macromol

January 2025

Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.

View Article and Find Full Text PDF

Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca mobilization, microtubule polymerization, and degranulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!