The global proteome response toward recombinant protein production in BL21 (DE3) grown in complex and defined medium was analyzed. Overproduction of human basic fibroblast growth factor (hFGF-2), a difficult-to-fold protein, led to a reconstruction of the bacterial proteome. For example, heat shock chaperones were highly upregulated, especially when production occurred during fast growth in complex medium. Although heat shock chaperones increased to higher levels in complex medium more hFGF-2 accumulated within inclusion bodies indicating that the capacity to chaperone protein folding was not sufficient for high speed production. In both types of media, cellular proteins from substrate transport systems, central metabolic pathways, and by-product uptake (e.g. acetate) were downregulated. This downregulation was connected to growth inhibition and metabolic perturbations. For example, during production in complex and defined medium acetate reassimilation and glucose uptake, respectively, were severely hampered. Cellular proteins for degradation of less favorable substrates, elimination of reactive oxygen species, and DNA protection were also downregulated in response to hFGF-2 production. The decrease of proteins involved in transport, central metabolic pathways, and general cell protection was more pronounced in the fast producing culture in complex medium than in the slow producing culture in defined medium. In general, production of hFGF-2 seems to interfere with the adaptation process to changing growth conditions, in this case the adaptation from exponential growth to stationary phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999367PMC
http://dx.doi.org/10.1002/elsc.201700036DOI Listing

Publication Analysis

Top Keywords

defined medium
16
complex defined
12
complex medium
12
global proteome
8
proteome response
8
human basic
8
basic fibroblast
8
fibroblast growth
8
growth factor
8
heat shock
8

Similar Publications

Heterogeneous head phantom for validating treatment planning system in boron neutron capture therapy.

Appl Radiat Isot

January 2025

Institute of Nuclear Engineering and Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; Nuclear Science and Technology Development Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan. Electronic address:

In clinical boron neutron capture therapy (BNCT), the distribution of dose to a heterogeneous medium that is predicted by a treatment planning system (TPS) should be experimentally validated. A head phantom specifically developed for this purpose is described and demonstrated herein. The cylindrical phantom exhibits distinct regions made from four materials (polymethyl methacrylate, calcium phosphate, air, and boric acid) to approximate a head structure with explicitly defined skin, skull, and brain tissue with a cavity and tumor within.

View Article and Find Full Text PDF

Introduction: The free exopolysaccharide (f-EPS) produced by is a natural texture modifier and has a variety of prebiotic activities. Our previous studies showed f-EPS production from 937 was increased 2-fold in the presence of 15 mM of glutamate, isoleucine, and histidine in the chemically defined medium.

Methods: In this study, we used transcriptomics and qPCR to further explore the specific mechanism of the enhanced effect of 3 amino acids on the f-EPS biosynthesis of 937.

View Article and Find Full Text PDF

Porcine endometrial epithelial organoids: Generation, characterization, and the impact of stromal cells.

Theriogenology

January 2025

Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, 150030, China. Electronic address:

Endometrial organoids (EOs) are three-dimensional models that emulate the endometrium, serving as an invaluable in vitro tool for investigating the cellular and molecular mechanisms underlying endometrial physiology and pathology during the estrous cycle and pregnancy. While significant progress has been made in the establishment and optimization of EOs for both humans and mice, research on such models in other species remains limited. This study aimed to develop porcine endometrial epithelial organoids (EEOs) to explore the regulatory mechanisms of uterine function and maternal-fetal interactions during porcine pregnancy, which are critical for enhancing reproductive efficiency and improving embryo transfer techniques.

View Article and Find Full Text PDF

Background: Postural stability is a key factor in maintaining an upright standing position. Children with average height (CAH) have elaborate general postural stability up to the age of seven years. Children with achondroplasia (ACH) face body disproportions like shorter arms and legs, bowing of the legs as well as hyperlordosis and hypokyphosis in the spine.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!