Metabolically engineered MEC143 with deletions of the , , , , and genes converts pentoses such as arabinose and xylose into glucose, with the dephosphorylation of glucose-6-phosphate serving as the final step. To determine which phosphatase mediates this conversion, we examined glucose formation from pentoses in strains containing knockouts of six different phosphatases singly and in combination. Deletions of single phosphatases and combinations of multiple phosphatases did not eliminate the accumulation of glucose from xylose or arabinose. Overexpression of one phosphatase, haloacid dehalogenase-like phosphatase 12 coded by the gene, increased glucose yield significantly from 0.26 to 0.30 g/g (xylose) and from 0.32 to 0.35 g/g (arabinose). Growing cells under phosphate-limited steady-state conditions increased the glucose yield to 0.39 g glucose/g xylose, but did not affect glucose yield from arabinose (0.31 g/g). No single phosphatase is exclusively responsible for the conversion of glucose-6-phosphate to glucose in MEC143. Phosphate-limited conditions are indeed able to enhance glucose formation in some cases, with this effect likely influenced by the different phosphate demands when metabolizes different carbon sources.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999600PMC
http://dx.doi.org/10.1002/elsc.201600177DOI Listing

Publication Analysis

Top Keywords

glucose yield
12
glucose
9
glucose formation
8
increased glucose
8
phosphatases
4
phosphatases phosphate
4
phosphate affect
4
affect formation
4
formation glucose
4
glucose pentoses
4

Similar Publications

is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of .

View Article and Find Full Text PDF

Innovative submerged directed fermentation: Producing high molecular weight polysaccharides from Ganoderma lucidum.

Food Chem

January 2025

Key Laboratory of Edible Fungi Resources and Utilization (South) of Ministry of Agriculture, China. National Engineering Research Center of Edible Fungi, Key Laboratory of Agricultural Genetics and Breeding of Shanghai, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China. Electronic address:

Polysaccharides from Ganoderma lucidum (GLPs) exhibit unique bioactivity, but traditional cultivation yields low quantities and unstable quality, limiting their research and application. This study highlights how submerged fermentation processes enable the directed acquisition of structurally defined high molecular weight (MW) bioactive intracellular polysaccharides (IPS). The results showed that inoculation amount and fermentation scales had a significant effect on the content of high MW IPS.

View Article and Find Full Text PDF

Microwave-assisted extraction conditions were optimized using response surface methodology to evaluate the effects of extraction parameters on the yield and carbohydrate content of Luffa aegyptiaca mucilage. Extraction at 540 W for 2 min with a 1:20 (g/mL) was determined as the optimal parameter, resulting in a maximum yield of 5.90 % (w/w) with 63 % carbohydrate content consisting of glucose, galactose, maltose, mannose, and galacturonic acid, with structural linkages of β (1 → 4) and β (1 → 6) glycosidic bonds.

View Article and Find Full Text PDF

Combined use of steam explosion, alkali, and microbial methods improving the yield, structure and properties of soluble dietary fiber from bamboo shoot shells.

Food Chem

January 2025

College of biological and food engineering, Anhui Polytechnic University, 241000 Wuhu, China; Wuhu Green Food Industry Research Institute Co., Ltd., 241000 Wuhu, China; Wuhu Hight Biotechnology Co., Ltd, 241000 Wuhu, China; Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, 241000 Wuhu, China. Electronic address:

Developing an effective method for extracting soluble dietary fiber (SDF) from bamboo shoot shell (BSS) is of great significance for the resource utilization of BSS. Here, we proposed the combinational strategy of steam explosion (SE), alkaline extraction (AE), and microbial extraction (ME) to enhance BSS-SDF yield. The highest yield of 28.

View Article and Find Full Text PDF

Biosynthesis of 2-phenylethanol from styrene using engineered Escherichia coli whole cells.

Enzyme Microb Technol

January 2025

Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China.

2-Phenylethanol, an aromatic alcohol with a rose scent, is widely used in the cosmetics, food, and pharmaceutical industries. We designed an efficient multi-enzyme cascade pathway for production of 2-phenylethanol from styrene as the substrate. Initially, 2-phenylethanol was produced by overexpression of styrene monooxygenase A (styA), styrene monooxygenase B (styB), styrene oxide isomerase (SOI), alcohol dehydrogenase (yahK), and glucose dehydrogenase (gdh) in Escherichia coli to give 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!