A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of intracellular metabolites of at high cell density with automated sampling and filtration and assessment of engineered enzymes for effective l-lysine production. | LitMetric

Engineering of enzymes and pathways is generally required for the development of efficient strains for bioproduction processes. To this end, quantitative and reliable data of intracellular metabolites are highly desired, but often not available, especially for conditions more close to industrial applications, i.e. at high cell density and product concentration. Here, we investigated the intracellular metabolite profiles of an engineered l-lysine-producing strain and the corresponding wild-type strain to assess the impacts of deregulation of product inhibition of the key enzymes aspartate kinase and phosphoenolpyruvate carboxylase and to identify potentials for their further improvement. A bioreactor system with automated fast-sampling, filtration and on-filter quenching of the metabolism was used for a more reliable determination of intracellular metabolites in batch cultures with optical cell density (OD) up to 40. The l-lysine-producing strain showed substantially different metabolite profiles in the amino acid metabolism, including increased intracellular pool sizes in the l-lysine-, l-homoserine- and l-threonine pathways and decreased intracellular pool sizes for all other determined amino acids. By comparing data of in vitro inhibition of the engineered enzymes and determined intracellular concentrations of the inhibitors it was found that the inferred in vivo activities of these enzymes are still significantly below their in vitro maximums. This work demonstrates the usefulness of metabolic analysis for assessing the impact of engineered enzymes and identifying targets for further strain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999343PMC
http://dx.doi.org/10.1002/elsc.201600163DOI Listing

Publication Analysis

Top Keywords

intracellular metabolites
12
cell density
12
engineered enzymes
12
high cell
8
metabolite profiles
8
l-lysine-producing strain
8
intracellular pool
8
pool sizes
8
enzymes
6
intracellular
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!