In this study, a procedure for quantifying the surface deposition of proteins in crossflow ultrafiltration has been developed. The procedure consists of determining the protein adsorption behavior onto the membrane surface from a few dynamic measurements performed in a nonfiltration and a filtration mode, and evaluating the concentration polarization (CP) layer thickness based on the adsorption data. To predict the interdependence between the protein adsorption and CP, a simplified mathematical model has been formulated. The model was used to assess the protein adsorption and thus yield reduction in the ultrafiltration process at different protein concentration in the solution. As a case study, ultrafiltration of aqueous solutions of BSA and lysozyme (LYZ) was examined on a polyethersulfone membrane with the molecular weight cutoff of 10 or 100 kDa. The protein concentration in the solutions varied within a relatively low concentration range, i.e. below 10 mg mL, characteristic for solvent exchange between sequential operations of protein purification by chromatography and extraction. Both proteins markedly differed in the mechanism of surface deposition; for BSA hydrophobic interactions were suggested to be dominant, whereas in case of LYZ electrostatic interactions contributed the most to the deposition mechanism. The effect of additives of the protein solutions, i.e. inorganic salts, PEG, and urea depended on the adsorption mechanism and was also specific for each protein. Nevertheless, the proposed procedure performed well in the evaluation of surface deposition and yield reduction, regardless of the protein type and its solvent environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999320PMC
http://dx.doi.org/10.1002/elsc.201500159DOI Listing

Publication Analysis

Top Keywords

surface deposition
12
protein adsorption
12
protein
10
membrane surface
8
crossflow ultrafiltration
8
yield reduction
8
protein concentration
8
deposition
5
surface
5
adsorption
5

Similar Publications

Formic acid (HCOOH) is one of the essential molecules for CO utilization including methanol synthesis and hydrogen carriers. In this study, we have investigated the chemical processes of hydrogen and HCOOH on a dilute-alloy Pd-Cu(111) surface using high-resolution X-ray photoelectron spectroscopy (HR-XPS) and density functional theory (DFT) calculations. The present Pd-Cu(111) surface was prepared at 500 K, and the observed core-level shifts of Pd 3d indicate that Pd atoms were located at the surface and subsurface sites: 335.

View Article and Find Full Text PDF

Environmental impact of an acid-forming alum shale waste rock legacy site in Norway.

Environ Sci Process Impacts

January 2025

Environmental Chemistry Section, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway.

Alum shale formations in Scandinavia are generally enriched in uranium (U) and, when exposed to air and water, may produce acidic rock drainage (ARD), releasing potentially harmful elements into the environment. Taraldrud is a legacy site in southeast Norway where approx. 51 000 m of alum shale was deposited in the 1980s-1990s.

View Article and Find Full Text PDF

Subnano AlO Coatings for Kinetics and Stability Optimization of LiNiCoMnO via O-Based Atomic Layer Deposition.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China.

The Ni-rich LiNiCoMnO cathode (NCM, ≥ 0.6) suffers rapid capacity decay due to serious surface degradations from the corrosion of the electrolyte. The processes of the HO- and O-based AlO atomic layer deposition (ALD) on the single-crystal LiNiCoMnO (NCM83) are investigated by measurements to understand the mechanism of their different impacts on the electrochemical performance of NCM83.

View Article and Find Full Text PDF

Construction of stable Cu/Cu sites at the fullerene/Cu(OH)F interface to boost the electroreduction of CO to C products.

Chem Commun (Camb)

January 2025

School of Chemistry and Chemical Engineering, Institute of Materials Sciences and Engineering, Institute of Clean Energy and Advanced Nanocatalysis (iClean), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan 243002, China.

Herein, the reduction of the Cu oxidation state during the CO electro-reduction reaction (CORR) is effectively inhibited by depositing C supramolecular clusters onto the Cu(OH)F surface. By utilizing the unique electronic buffering capacity of C, a significant number of Cu/Cu sites are created, leading to a remarkable faradaic efficiency of C products up to 76.9% and exceptional stability.

View Article and Find Full Text PDF

Electrochemical Migration of Zincophilic Metals for Stress Mitigation and Uniform Zinc Deposition in Aqueous Zinc-Ion Batteries.

Small

January 2025

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China.

The propensity of zinc (Zn) to form irregular electrodeposits at liquid-solid interfaces emerges as a fundamental barrier to high-energy, rechargeable batteries that use zinc anodes. So far, tremendous efforts are devoted to tailoring interfaces, while atomic-scale reaction mechanisms and the related nanoscale strain at the electrochemical interface receive less attention. Here, the underlying atomic-scale reaction mechanisms and the associated nanoscale strain at the electrochemical alloy interface are investigate, using gold-zinc alloy protective layer as a model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!