Acute myocardial infarction (AMI) is one of the leading causes of death throughout the world. Usual methods for detecting AMI are expensive, time-consuming and using blood samples as biological samples. Therefore, creating an ultra-fast, sensitive and non-invasive diagnostic test is necessary. Herein, a novel ultra-sensitive, fluorescent, plasmon-exciton coupling hybrid of a gold nanoparticle-quantum dot (PQ)-based aptamer nanobiosensor is presented for the detection of human cardiac troponin I (cTnI), the golden biomarker of AMI, and a preclinical test is performed within saliva. The binding of the cTnI protein to aptamer leads to a fluorescence enhancement of the plexcitonic hybrid system. The response range of this nanobiosensor is 0.4-2500 fM and the limit of detection is 0.3 fM. It seems that this novel design of nanobiosensor in the form of the PQ plexcitonic hybrid system can presents new opportunities for nanobiosensor progress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6999242 | PMC |
http://dx.doi.org/10.1002/elsc.201500188 | DOI Listing |
Anim Reprod Sci
October 2023
Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran. Electronic address:
Cryopreservation is a widely used technique to store spermatozoa for a long time. Some Published articles have identified the cryoprotective effect of nanoparticles on sperm quality after the freeze-thaw process, but others have suggested the opposite results. PubMed, ISI Web of Science, and Scopus were systematically searched in animal studies by ("sperm" OR "spermatozoa") AND ("cryopreservation" OR "cooling storage" OR "freezing" OR "thawing") AND ("nanoparticle (lecithin nanoparticle, selenium nanoparticle, zinc nanoparticle, zinc oxide nanoparticle, nanoliposome, solid lipid nanoparticle (SLN), micelle, hydrogel, nanogel, silica nanoparticle, quantum dot, dendrimer, gold (Au) nanoparticle, silver nanoparticle, nanocomposite and mesoporous)").
View Article and Find Full Text PDFNanoscale
February 2020
University Rennes 1, Institute of Chemical Sciences, UMR 6226 CNRS, Campus Beaulieu, F-35042 Rennes, France.
Hybrid nanostructures are constructed by the direct coupling of fluorescent quantum dots and plasmonic gold nanoparticles. Self-assembly is directed by the strong affinity between two artificial α-repeat proteins that are introduced in the capping layers of the nanoparticles at a controlled surface density. The proteins have been engineered to exhibit a high mutual affinity, corresponding to a dissociation constant in the nanomolar range, towards the protein-functionalized quantum dots and gold nanoparticles.
View Article and Find Full Text PDFBiosens Bioelectron
May 2018
Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China. Electronic address:
Up to now, the colloidal gold labeling immunochromatographic test strip is a mature and applicable technology. However, different from the conventional gold nanoparticle, quantum dot (QD) possesses larger specific surface area and better biocompatibility. So, as a novel nanomaterial, QD is capable of assembling more biomolecule which could enhance the sensitivity and accuracy of strips by rationality.
View Article and Find Full Text PDFACS Sens
February 2018
The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
Sensitive imaging of microRNA in living cells is of great value for disease diagnostics and prognostics. While signal amplification-based strategies have been developed for imaging low-abundance disease-relevant microRNA molecules, precise temporal control over sensor activity in living cells still remains a challenge, and limits their applications for sensing microRNA concentration dynamics. Herein, we report a class of photocaged nanoparticle sensors for highly sensitive imaging of microRNA in living cells with temporal control.
View Article and Find Full Text PDFBiosens Bioelectron
August 2017
Laboratory of Biotechnology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Laboratory of Biotechnology, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan. Electronic address:
The current epidemic caused by the Zika virus (ZIKV) and the devastating effects of this virus on fetal development, which result in an increased incidence of congenital microcephaly symptoms, have prompted the World Health Organization (WHO) to declare the ZIKV a public health issue of global concern. Efficient probes that offer high detection sensitivity and specificity are urgently required to aid in the point-of-care treatment of the virus. In this study, we show that localized surface plasmon resonance (LSPR) signals from plasmonic nanoparticles (NPs) can be used to mediate the fluorescence signal from semiconductor quantum dot (Qdot) nanocrystals in a molecular beacon (MB) biosensor probe for ZIKV RNA detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!