Six out of eight human melanoma cell lines were found to be able to function as accessory cells in PHA-induced proliferation of autologous and allogeneic T cells. The accessory cell function of the melanoma cell lines appears to be similar to that of monocytes, requires the presence of viable cells, and does not correlate with the cell surface binding sites for PHA and with the level of expression of HMW-MAA and of HLA Class I antigens. HLA Class II antigens do not appear to play a major role in these phenomena, since there is no relationship between level of expression of HLA Class II antigens and accessory cell function of melanoma cells. Furthermore, addition of anti-HLA Class II monoclonal antibodies does not affect proliferation of T cells stimulated with PHA in the presence of melanoma cells with accessory cell function. Although melanoma cells exert accessory cell function, functional and immunological assays did not detect IL-1 in the spent medium of the melanoma cell lines. Furthermore, Northern blotting analysis with IL-1 alpha and IL-1 beta probes did not detect IL-1-specific mRNA in melanoma cell lines. These results suggest that PHA-induced proliferation of T cells in the presence of melanoma cells can bypass the requirement for IL-1 or utilizes factors other than IL-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0008-8749(88)90217-1DOI Listing

Publication Analysis

Top Keywords

accessory cell
20
cell function
20
melanoma cells
20
melanoma cell
16
cell lines
16
function melanoma
12
hla class
12
class antigens
12
cells
10
cell
10

Similar Publications

Enhancing cell-mediated immunity through dendritic cell activation: the role of Tri-GalNAc-modified PLGA-PEG nanoparticles encapsulating SR717.

Front Immunol

December 2024

State Key Laboratory for Animal Disease Control and Prevention & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

Introduction: Vaccines against intracellular pathogens like require the induction of effective cell-mediated immunity. Adjuvants primarily enhance antigen-induced adaptive immunity by promoting the activation of antigen-presenting cells (APCs).This study is to develop an adjuvant targeted to dendritic cells (DCs), one of the main APCs, so as to assist in inducing a long-term cellular immune response to protein antigens.

View Article and Find Full Text PDF

Mediating role of blood metabolites in the relationship between immune cell traits and sepsis: a Mendelian randomization and mediation analysis.

Inflamm Res

January 2025

Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, People's Republic of China.

Background: A significant association between immune cells and sepsis has been suggested by observational studies. However, the precise biological mechanisms underlying this association remain unclear. Therefore, we employed a Mendelian randomization (MR) approach to investigate the causal relationship between immune cells and genetic susceptibility to sepsis, and to explore the potential mediating role of blood metabolites.

View Article and Find Full Text PDF

MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective.

Inflamm Res

January 2025

Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.

Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment.

View Article and Find Full Text PDF

A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action.

Front Immunol

January 2025

Amgen Research, Amgen Inc., South San Francisco, CA, United States.

Tolerogenic vaccines represent a therapeutic approach to induce antigen-specific immune tolerance to disease-relevant antigens. As general immunosuppression comes with significant side effects, including heightened risk of infections and reduced anti-tumor immunity, antigen-specific tolerance by vaccination would be game changing in the treatment of immunological conditions such as autoimmunity, anti-drug antibody responses, transplantation rejection, and hypersensitivity. Tolerogenic vaccines induce antigen-specific tolerance by promoting tolerogenic antigen presenting cells, regulatory T cells, and regulatory B cells, or by suppressing or depleting antigen-specific pathogenic T and B cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) show great potential for therapeutic delivery to human cells, with a focus on modulating immune responses. The most promising targets for inducing humoral and cellular immunity against a specific antigen are macrophages (Mϕs) and dendritic cells (DCs). Targeting mannose receptors (CD206), which are highly expressed on these antigen-presenting cells, to promote the presentation of specific antigens through EV-mediated uptake, is a promising strategy in clinical immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!