Infectious diseases still remain one of the biggest challenges for human health. Accurate and early detection of infectious pathogens are crucial for transmission control, clinical diagnosis, and therapy. For a traditional reason, most immunological and microbiological laboratories are equipped with instruments designated for antibody-based assays in detection of infectious pathogens or clinical diagnosis. Emerging aptamer-based technologies have pushed a shift from antibody-based to aptamer-based assays due to equal specificity, even better sensitivity, lower manufacturing cost and more flexibility in amending for chemiluminescent, electrochemical or fluorescent detection in a multifaceted and high throughput fashion in comparison of aptamer-based to antibody-based assays. The nature of aptamer-based technologies is particularly suitable for point-of-care testing in remote areas at warm or hot atmosphere, and mass screening for potential infection in pandemic of emerging infectious agents, such as SARS-CoV or SARS-CoV-2 in an epicentre or other regions. This review intends to summarize currently available aptamer-based technologies in detection of bacterial, viral, and protozoan pathogens for research and clinical application. It is anticipated that potential technologies will be further optimized and validated for clinical translation in meeting increasing demands for prompt, precise, and reliable detection of specific pathogens in various atmospheric conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473197 | PMC |
http://dx.doi.org/10.1080/22221751.2020.1792352 | DOI Listing |
Lab Chip
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-U.K. "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. Although interferon-free direct-acting antivirals have led to significant advancements in the treatment of HCV infection, the high genetic variability of the virus and the emergence of acquired drug resistance pose potential threats to their effectiveness. In this study, we develop a broad-spectrum aptamer-based proteolysis targeting chimera, designated dNS5B, which effectively degrades both pan-genotypic NS5B polymerase and drug-resistant mutants through ubiquitin proteasome system.
View Article and Find Full Text PDFTalanta
January 2025
Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China. Electronic address:
Alternariol (AOH) has attracted much attention as an emerging toxin in edible herbs that can pose potential carcinogenic risks to human. However, the rapid detection of AOH to ensure food safety remains a challenge. Here, a CRISPR-Cas12a-mediated aptamer-based sensor (aptasensor) was proposed for the sensitive quantification of AOH by using a personal glucose meter.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan. Electronic address:
We developed a novel DNA aptamer, D8#24S1, which specifically recognizes mertansine (DM1), the cytotoxic payload of the antibody-drug conjugate (ADC) trastuzumab emtansine (T-DM1), and applied it for T-DM1 analysis. D8#24S1 was obtained through SELEX and was shown to specifically recognize DM1 with high affinity (dissociation constant, K = 84.2 nM).
View Article and Find Full Text PDFNat Commun
January 2025
Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Discovering antigen-reactive T cell receptors (TCRs) is central to developing effective engineered T cell immunotherapies. However, the conventional technologies for isolating antigen-reactive TCRs (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!