Two-dimensional metal-organic frameworks (2D MOFs) have attracted much attention, as they are the crystalline materials that exhibit both conductivity and microporosity. Numerous efforts have been made to advance their application as chemiresistive sensors or electrochemical capacitors. However, the intrinsic physical properties and spin states of these materials remain poorly understood. Most of these 2D MOFs possess a honeycomb lattice, with a Kagomé lattice arrangement of metal cations. These structural characteristics suggest that these MOFs would be candidates for geometrically frustrated spin systems with unprecedented magnetic phenomena. Herein, by performing magnetic susceptibility and specific heat measurements at an ultralow temperature down to 38mK on a 2D semiconductive MOF, Cu(HHTP), a quantum spin liquid state that arises from the geometrical frustration was suggested. This result illustrates the potential of strongly correlated MOFs as systems with emergent phenomena induced by unusual structural topologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c05472 | DOI Listing |
Molecules
January 2025
School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
Developing a new type of circularly polarized luminescent active small organic molecule that combines high fluorescence quantum yield and luminescence dissymmetric factor in both solution and solid state is highly challenging but promising. In this context, we designed and synthesized a unique triarylborane-based [2.2]paracyclophane derivative, , in which an electron-accepting [(2-dimesitylboryl)phenyl]ethynyl group and an electron-donating -diphenylamino group are introduced into two different benzene rings of [2.
View Article and Find Full Text PDFMolecules
January 2025
Department of Engineering Science, The University of Electro-Communications, Chofu 182-8585, Tokyo, Japan.
A new compound [Y(sq)(HO)] (Y-sq; sq = squarate (CO)) was prepared and structurally characterized. Since the RE-sq family (RE = Y, Dy, Yb, Lu) gave isostructural crystals, the objective of this study is to explore the effects of diamagnetic dilution on the SIM behavior through systematic investigation and comparison of diamagnetically diluted and undiluted forms. The 1%-Diluted Dy compounds, Dy@Y-sq and Dy@Lu-sq, showed AC magnetic susceptibility peaks without any DC bias field (), whereas undiluted Dy-sq showed no AC out-of-phase response under the same conditions.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, HKU-CAS Joint Laboratory on New Materials and Shanghai-Hong Kong Joint Laboratory on Chemical Synthesis, The University of Hong Kong, Hong Kong, China.
High-spin carbon-based polyradicals exhibit significant potential for applications in quantum information storage and sensing; however, their practical application is hampered by limited structural diversity and chemical instability. Here, we report a straightforward synthetic and isolation method for synthesizing a nonalternant nanographene (1) with a triplet ground state. Moving beyond the classic m-xylylene scaffold for high-spin organic molecules, seven-five-seven (7-5-7)-membered rings are introduced to create stable high-spin diradicals with half-lives (t) as long as 101 days.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.
Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso 2390123, Chile.
In this work, we study the magnetocaloric effect (MCE) in a working substance corresponding to a square lattice of spins with possible orientations, known as the "-state clock model". When the -state clock model has Q≥5 possible configurations, it presents the famous Berezinskii-Kosterlitz-Thouless (BKT) phase associated with vortex states. We calculate the thermodynamic quantities using Monte Carlo simulations for even numbers, ranging from Q=2 to Q=8 spin orientations per site in a lattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!