A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of dosimetric impact of intrafraction translation and rotation during respiratory-gated stereotactic body radiotherapy with real-time tumor monitoring of the lung using a novel six degrees-of-freedom robotic moving phantom. | LitMetric

Purpose: This study aimed to develop a six degrees-of-freedom (6DoF) robotic moving phantom for evaluating the dosimetric impact of intrafraction rotation during respiratory-gated radiotherapy with real-time tumor monitoring in the lung.

Materials And Methods: Fifteen patients who had undergone respiratory-gated stereotactic body radiotherapy (SBRT) with the SyncTraX system for lung tumors were enrolled in this study. A water-equivalent phantom (WEP) was set at the tip of the robotic arm. A log file that recorded the three-dimensional positions of three fiducial markers implanted near the lung tumor was used as the input to the 6DoF robotic moving phantom. Respiratory-gated radiotherapy was performed for the WEP, which was driven using translational and rotational motions of the lung tumor. The accuracy of the 6DoF robotic moving phantom was calculated as the difference between the actual and the measured positions. To evaluate the dosimetric impact of intrafraction rotation, the absolute dose distributions under conditions involving gating and movement were compared with those under static conditions.

Results: For the sinusoidal patterns, the mean ± standard deviation (SD) of the root mean square errors (RMSEs) of the translation and rotation positional errors was <0.40 mm and 0.30°, respectively, for all directions. For the respiratory motion patterns of 15 patients, the mean ± SD of the RMSEs of the translation and rotation positional errors was <0.55 mm and 0.85°, respectively, for all directions. The γ values under translation with/without gating were 97.6 ± 2.2%/80.9 ± 18.1% and 96.8 ± 2.3%/80.0 ± 17.0% in the coronal and sagittal planes, respectively. Further, the γ values under rotation with/without gating were 91.5 ± 6.5%/72.8 ± 18.6% and 90.3 ± 6.1%/72.9 ± 15.7% in the coronal and sagittal planes, respectively.

Conclusions: The developed 6DoF robotic phantom system could determine the translational and rotational motions of lung tumors with high accuracy. Further, respiratory-gating radiotherapy with real-time tumor monitoring using an internal surrogate marker was effective in compensating for the translational motion of lung tumors but not for correcting their rotational motion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14369DOI Listing

Publication Analysis

Top Keywords

robotic moving
16
moving phantom
16
dosimetric impact
12
impact intrafraction
12
6dof robotic
12
translation rotation
8
rotation respiratory-gated
8
respiratory-gated stereotactic
8
stereotactic body
8
body radiotherapy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!