Objectives: Connexins are building blocks of membranous channels that form gap junctions and hemichannels. These channels are essential portals for information exchange and coordination during inflammation. Pathologic levels of these conduits may result in excessive inflammation and collateral destruction. This study aimed to analyse temporospatial levels of connexin 43 (Cx43) during pulpitis in extracted human teeth and in a rodent model. A specific interest was directed at the pulpal stroma as it is conserved during vital pulp therapy.
Materials And Methods: Pulpal tissues were attained from human extracted teeth of various pulpal inflammatory stages and fixed for cryosections. Pulpal exposures were created in bilateral maxillary molars in Sprague-Dawley rats. Rats were sacrificed at days 1 to 5 post-exposure. Immunofluorescence histology was performed to detect Cx43, markers for inflammation, and cell death. Immunofluorescent levels in the pulpal stroma at 3 sites (wound/near/far) were matched to pulpal condition (human) or days post-exposure (rodent).
Results: Cx43 upregulation was observed with increased severity of pulpitis both in humans and rodent model. The upregulation appeared to be global and included distant regions. Elevated levels of neutrophils were present in advanced pulpitis. Apoptosis and necroptosis seem to be upregulated in human samples as Cx43 levels rose.
Conclusions: We observed a disseminated upregulation of Cx43 throughout the pulpal stroma as inflammation became advanced. This observation may facilitate cell death signal transfer or represent overt levels of purinergic signalling that leads to pro-inflammatory conditions.
Clinical Relevance: Cx43 downregulation may represent a potential therapeutic approach to enable resolution of pulpal inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00784-020-03439-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!