Various multi-modal imaging sensors are currently involved at different steps of an interventional therapeutic work-flow. Cone beam computed tomography (CBCT), computed tomography (CT) or Magnetic Resonance (MR) images thereby provides complementary functional and/or structural information of the targeted region and organs at risk. Merging this information relies on a correct spatial alignment of the observed anatomy between the acquired images. This can be achieved by the means of multi-modal deformable image registration (DIR), demonstrated to be capable of estimating dense and elastic deformations between images acquired by multiple imaging devices. However, due to the typically different field-of-view (FOV) sampled across the various imaging modalities, such algorithms may severely fail in finding a satisfactory solution. In the current study we propose a new fast method to align the FOV in multi-modal 3D medical images. To this end, a patch-based approach is introduced and combined with a state-of-the-art multi-modal image similarity metric in order to cope with multi-modal medical images. The occurrence of estimated patch shifts is computed for each spatial direction and the shift value with maximum occurrence is selected and used to adjust the image field-of-view. The performance of the proposed method - in terms of both registration accuracy and computational needs - is analyzed in the practical case of on-line irreversible electroporation procedures. In total, 30 pairs of pre-/per-operative IRE images are considered to illustrate the efficiency of our algorithm. We show that a regional registration approach using voxel patches provides a good structural compromise between the voxel-wise and "global shifts" approaches. The method was thereby beneficial for CT to CBCT and MRI to CBCT registration tasks, especially when highly different image FOVs are involved. Besides, the benefit of the method for CT to CBCT and MRI to CBCT image registration is analyzed, including the impact of artifacts generated by percutaneous needle insertions. Additionally, the computational needs using commodity hardware are demonstrated to be compatible with clinical constraints in the practical case of on-line procedures. The proposed patch-based workflow thus represents an attractive asset for DIR at different stages of an interventional procedure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2020.101750 | DOI Listing |
Odontology
January 2025
School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
Objectives: To analyze the CT imaging features of extranodal natural killer/T (NK/T)-cell lymphoma, nasal type (ENKTCL-NT) involving the gastrointestinal tract (GI), and to compare them with those of Crohn's disease (CD) and diffuse large B-cell lymphoma (DLBCL).
Materials And Methods: Data were retrospectively collected from 17 patients diagnosed with GI ENKTCL-NT, 68 patients with CD, and 47 patients with DLBCL. The CT findings of ENKTCL-NT were analyzed and compared with those of CD and DLBCL.
Br J Radiol
January 2025
Royal United Hospital, Combe Park, Bath, Avon, BA1 3NG, UK.
Objectives: Artificial intelligence (AI) software including Brainomix "e-CTA" which detect large vessel occlusions (LVO) have clinical potential. We hypothesised that in real world use where prevalence is low, its clinical utility may be overstated.
Methods: In this single centre retrospective service evaluation project, data sent to Brainomix from a medium size acute National Health Service (NHS) Trust hospital between 1/3/2022-1/3/2023 was reviewed.
Clin Oral Investig
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.
Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.
R I Med J (2013)
February 2025
Brown University Health Cardiovascular Institute; Rhode Island, the Miriam and Newport Hospitals; Warren Alpert Medical School, Brown University.
Cardiac magnetic resonance imaging (CMR) is an exciting noninvasive imaging modality with increasing utilization in the field of cardiovascular medicine. In conjunction with echocardiogram, computed tomography, and invasive therapies, CMR has provided exceptional capability to further evaluate complex clinical cardiac conditions. CMR provides both anatomical and physiological information of a variety of tissue types, without the need for ionizing radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!