Surface-eroding polymers are of significant interest for various applications in the field of controlled drug delivery. Poly(ethylene carbonate), as an example, offers little control over the rate of degradation and, thus, drug release, which usually conflicts with the requirements for long-acting medications. Here, we challenged an option to decelerate the degradation of poly(ethylene carbonate) in vitro and in vivo. When polymer films loaded with distinct antioxidants (vitamins) along with the model drugs leuprorelin and risperidone were incubated in superoxide radical solution and phagocyte culture, the mass loss and drug release from the delivery vehicle was a function of the type and dose of the utilized antioxidant. Once the polymer surface was "attacked" by reactive oxygen species, the antioxidants were released on demand quenching the polymer-degrading radicals. Accordingly, specific combinations of polymer and radical scavengers resulted in controlled release medications with an extended "life-time" of one month or longer, which is difficult to achieve for poly(ethylene carbonate) in the absence of antioxidants. A comparable degradation and drug release behavior was observed when antioxidant-loaded poly(ethylene carbonate) films were implanted in rats. Furthermore, linear correlations were obtained between the mass loss of the polymer films and the released fraction of drug (with slopes close to 1), a clear indication for the surface erosion of poly(ethylene carbonate) in vitro and in vivo. Overall, an addition of antioxidants to poly(ethylene carbonate)-based controlled drug delivery vehicles represents a reasonable approach to modify the performance of long-acting medications, especially when a "life time" of weeks to months needs to be achieved. STATEMENT OF SIGNIFICANCE: Surface-eroding poly(ethylene carbonate) (PEC) is of significant interest for long-acting injectable formulations. However, PEC offers only little control over the rate of degradation and, thus, drug release kinetics. We describe an option to decelerate the degradation rate of PEC in vitro and in vivo. When polymer films loaded with distinct antioxidants along with model drugs were incubated in superoxide radical solution, phagocyte culture and implanted in rats, their mass loss and drug release was a function of the type and dose of the utilized antioxidant. Accordingly, specific combinations of polymer and radical scavengers resulted in controlled release medications with an extended "life-time" of one month or longer, which is difficult to achieve for PEC in the absence of antioxidants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2020.06.041DOI Listing

Publication Analysis

Top Keywords

polyethylene carbonate
28
drug release
24
degradation drug
16
vitro vivo
12
polymer films
12
mass loss
12
drug
9
release
8
polyethylene
8
surface-eroding polyethylene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!