The purpose of this study was to develop a novel pH-sensitive hydrogel which was used to regulate the acute radiation syndrome (ARS). The hydrogel was fabricated by grafting polycaprolactone onto methacrylic acid copolymer (MAC-g-PCL). Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (H NMR) confirmed the obtaining of MAC-g-PCL hydrogel. The hydrogel was pH-sensitive, at pH 1.2, it was compact hydrogel, but at pH7.4, it was dissolved solution. Its inner 3D morphology was observed by scanning electron microscope (SEM). Cell experiments indicated that the MAC-g-PCL hyrogel was out of cytotoxicity. The release profile of amifostine showed that small amount drug release in simulated gastric fluid (pH 1.2) and burst release in simulated intestinal fluid (pH 7.4). Thus, the pH-sensitive hydrogels could protect amifostine from enzymatic degradation in acidic stomach and deliver effectively in the intestine. The radioprotective efficacy was determined by peripheral complete blood parameters and 30-day survival study in mice acutely exposed to 4 Gy γ-ray total body irradiation. Results suggested that oral administration MAC-g-PCL/Ami before total body irradiation protected the mice from hematopoietic ARS and enhanced their survival. Furthermore, in vivo bio-distribution studies indicated that the drug could be sustained delivered at intestinal tract and entered the bloodstream. These results demonstrated that oral administration of amifostine hydrogel provided effective radioprotection to reduce the ARS injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2020.111200 | DOI Listing |
Anal Chem
January 2025
Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
Developing ambient ionization methods for direct mass spectrometry (MS) analysis is crucial for achieving sample-to-answer capabilities, especially for rapid analysis and monitoring in specific scenarios. Herein, a compact device is presented that utilizes mesh-collision microtube plasma (MC-μTP) ionization for direct online MS analysis. This device features a self-aspirating design that enables the direct analysis of various sample types.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India.
Objective: The present study aims to develop and evaluate the voriconazole-loaded thermoresponsive hydrogel using tools.
Methods: Poloxamer 407 and PEG 400 were selected as the components from studies for thermoresponsive hydrogel of voriconazole. The cohesive energy density (CED) and solubility parameters (SP) were calculated using Biovia Material Studio 2022 software to predict the polymer-polymer miscibility and drug-polymer miscibility.
Mol Oncol
January 2025
Department of Gastrointestinal Cancer Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China.
Gastric cancer (GC) is the third leading cause of cancer-related deaths worldwide, with gastrectomy being the primary treatment option. Sepsis, a systemic inflammatory response to infection, may influence tumor growth by creating an immunosuppressive environment conducive to cancer cell proliferation and metastasis. Here, the effect of abdominal infection on tumor growth and metastasis was investigated through the implementation of a peritoneal metastasis model and a subcutaneous tumor model.
View Article and Find Full Text PDFFront Pharmacol
January 2025
National Clinical Research Center for TCM Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: Vascular calcification (VC) commonly occurs in diabetes and is associated with cardiovascular disease incidence and mortality. Currently, there is no drug treatment for VC. The Danlian-Tongmai formula (DLTM) is a traditional Chinese medicine (TCM) prescription used for diabetic VC (DVC), but its mechanisms of action remain unclear.
View Article and Find Full Text PDFMol Pharm
January 2025
Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
The exposure of mRNA to water is likely to contribute to the instability of RNA vaccines upon storage under nonfrozen conditions. Using atomistic molecular dynamics (MD) simulations, we investigated the pH-dependent structural transition and water penetration behavior of mRNA-lipid nanoparticles (LNPs) with the compositions of Moderna and Pfizer vaccines against COVID-19 in an aqueous solution. It was revealed that the ionizable lipid (IL) membranes of LNPs were extremely sensitive to pH, and the increased acidity could cause a rapid membrane collapse and hydration swelling of LNP, confirming the high releasing efficiency of both LNP vaccines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!