A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pyruvate metabolism redirection for biological production of commodity chemicals in aerobic fungus Aspergillus oryzae. | LitMetric

Pyruvate metabolism redirection for biological production of commodity chemicals in aerobic fungus Aspergillus oryzae.

Metab Eng

Graduate School of Science, Technology, and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. Electronic address:

Published: September 2020

Pyruvate is a central metabolite for the biological production of various chemicals. In eukaryotes, pyruvate produced by glycolysis is used in conversion to ethanol and lactate and in anabolic metabolism in the cytosol, or is transported into the mitochondria for use as a substrate in the tricarboxylic acid (TCA) cycle. In this study, we focused on controlling pyruvate metabolism in aerobic microorganisms for the biological production of various chemicals. We successfully improved productivity by redirecting pyruvate metabolism in the aerobic filamentous fungus Aspergillus oryzae via the deletion of two genes that encode pyruvate decarboxylase and mitochondrial pyruvate carriers. Production of ethanol as a major byproduct was completely inhibited, and the limited translocation of pyruvate into the mitochondria shifted the metabolism from respiration for energy conversion to the effective production of lactate or 2,3-butandiole, even under aerobic conditions. Metabolomic and transcriptomic analyses showed an emphasis on glycolysis and a repressed TCA cycle. Although the dry mycelial weights of the deletion mutants were reduced compared with those of wild type, the titer and yields of the target products were drastically increased. In particular, the redirection of pyruvate metabolism shifted from anabolism for biomass production to catabolism for the production of target chemicals. Conclusively, our results indicate that the redirection of pyruvate metabolism is a useful strategy in the metabolic engineering of aerobic microorganisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2020.06.010DOI Listing

Publication Analysis

Top Keywords

pyruvate metabolism
20
biological production
12
pyruvate
10
fungus aspergillus
8
aspergillus oryzae
8
production chemicals
8
tca cycle
8
metabolism aerobic
8
aerobic microorganisms
8
redirection pyruvate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!