The effect of different frequencies and waveforms was investigated for the first time on alternating current electrospinning (ACES). PVPVA64, a polyvinylpyrrolidone-vinyl acetate copolymer was selected for the experiments as an important matrix for amorphous solid dispersions but never processed with ACES. It has been proved that ACES could be operated in a wide range of frequencies (40-250 Hz) and using different waveforms (sinusoidal, square, triangle, saw tooth) without significant changes in fiber morphology. Nevertheless, deterioration of the fiber formation process could be also observed especially at high frequencies. The developed PVPVA64-based fibers containing small amounts of additives (polyethylene oxide (PEO) and sodium dodecyl sulfate (SDS)) served as an excellent carrier for spironolactone (SPIR), a poorly soluble antihypertensive drug. As a result of the amorphously dispersed SPIR and the large surface area of the AC electrospun fibers immediate drug release could be achieved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119593DOI Listing

Publication Analysis

Top Keywords

alternating current
8
current electrospinning
8
frequency waveform
4
waveform dependence
4
dependence alternating
4
electrospinning drug
4
drug dissolution
4
dissolution enhancement
4
enhancement frequencies
4
frequencies waveforms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!