To probe the mechanism of inhibition of several previously-published metallo-β-lactamase (MBL) inhibitors for the clinically-important MBL Verona integron-encoded metallo-β-lactamase 2 (VIM-2), equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry (ESI-MS), and UV-Vis spectrophotometry were utilized. The mechanisms of inhibition were analyzed for ethylenediaminetetraacetic acid (EDTA); dipicolinic acid (DPA) and DPA analogs 6-(1H-tetrazol-5-yl)picolinic acid (1T5PA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA); thiol-containing compounds, 2,3-dimercaprol, thiorphan, captopril, and tiopronin; and 5-(pyridine-3-sulfonamido)-1,3-thiazole-4-carboxylic acid (ANT-431). UV-Vis spectroscopy and native-state ESI-MS results showed the formation of ternary complexes between VIM-2 and 1T5PA, ANT-431, thiorphan, captopril, and tiopronin, while a metal stripping mechanism was shown with VIM-2 and EDTA and DPA. The same approaches were used to show the formation of a ternary complex between New Delhi Metallo-β-lactamase (NDM-1) and ANT-431. The studies presented herein show that most of the inhibitors utilize a similar mechanism of inhibition as previously reported for NDM-1. These studies also demonstrate that native mass spectrometry can be used to probe the mechanism of inhibition at lower enzyme/inhibitor concentrations than has previously been achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2020.111123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!