How to do things with (thousands of) words: Computational approaches to discourse analysis in Alzheimer's disease.

Cortex

Neurosciences Research Centre, Molecular & Clinical Sciences Research Institute, St George's, University of London, Cranmer Terrace, London, UK. Electronic address:

Published: August 2020

Natural Language Processing (NLP) is an ever-growing field of computational science that aims to model natural human language. Combined with advances in machine learning, which learns patterns in data, it offers practical capabilities including automated language analysis. These approaches have garnered interest from clinical researchers seeking to understand the breakdown of language due to pathological changes in the brain, offering fast, replicable and objective methods. The study of Alzheimer's disease (AD), and preclinical Mild Cognitive Impairment (MCI), suggests that changes in discourse (connected speech or writing) may be key to early detection of disease. There is currently no disease-modifying treatment for AD, the leading cause of dementia in people over the age of 65, but detection of those at risk of developing the disease could help with the identification and testing of medications which can take effect before the underlying pathology has irreversibly spread. We outline important components of natural language, as well as NLP tools and approaches with which they can be extracted, analysed and used for disease identification and risk prediction. We review literature using these tools to model discourse across the spectrum of AD, including the contribution of machine learning approaches and Automatic Speech Recognition (ASR). We conclude that NLP and machine learning techniques are starting to greatly enhance research in the field, with measurable and quantifiable language components showing promise for early detection of disease, but there remain research and practical challenges for clinical implementation of these approaches. Challenges discussed include the availability of large and diverse datasets, ethics of data collection and sharing, diagnostic specificity and clinical acceptability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cortex.2020.05.001DOI Listing

Publication Analysis

Top Keywords

machine learning
12
alzheimer's disease
8
natural language
8
early detection
8
detection disease
8
disease
6
language
6
approaches
5
things thousands
4
thousands computational
4

Similar Publications

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!