Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using UV-Vis, FT-IR, fluorescence spectroscopy and protein-ligand docking, the interactions between the zinc complexes with drug analogues and bovine serum albumin were investigated. In addition, considering the ubiquitous presence of zinc ions in the human system, we studied the interactions between this ion with hymecromone, dihydropyridine analogue, and acetamide, as well as the pH influence on these systems. The complexes were synthesized by interaction between the ligands and the Zn (II) ion in a 2:1 M ratio. Elemental analysis, FT-IR, and UV-Vis spectroscopy studies investigated the structure of the synthesized complexes. Fluorescence spectroscopy, UV-Vis, molecular docking and molecular dynamics were used to study the interactions of the Zn complexes with the BSA. The drug-Zn (II) system's pH effect was investigated using UV-Vis spectroscopy. After the complexation with the zinc, the drug molecules exhibited higher apparent binding affinity to BSA. BSA's fluorescence efficiency by the drug analogues was enhanced. In addition, molecular modelling was used to classify the residue of amino acids in the BSA playing key roles in this binding interaction. An increase in pH appears to contribute to alkaline hydrolysis of the Zn (II) molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!