Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis has been used as a structural model for rationalizing functional observations in multiple MscL orthologs. Although these orthologs adopt similar structural architectures, they reportedly present significant functional differences. Subtle structural discrepancies on mechanosensitive channel nanopockets are known to affect mechanical gating and may be linked to large variability in tension sensitivity among these membrane channels. Here, we modify the nanopocket regions of MscL from Escherichia coli and M. tuberculosis and employ PELDOR/DEER distance and 3pESEEM deuterium accessibility measurements to interrogate channel structure within lipids, in which both channels adopt a closed conformation. Significant in-lipid structural differences between the two constructs suggest a more compact E. coli MscL at the membrane inner-leaflet, as a consequence of a rotated TM2 helix. Observed differences within lipids could explain E. coli MscL's higher tension sensitivity and should be taken into account in extrapolated models used for MscL gating rationalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376121 | PMC |
http://dx.doi.org/10.1016/j.bpj.2020.06.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!