Background: Ginkgolides are widely used in cardio-protective therapy; however, poor bioavailability currently limits their application.
Objective: The purpose of this study was to demonstrate whether solid dispersions prepared with Low- Molecular-Weight Chitosan (LMWC) could improve the protective effect of ginkgolides on Myocardial Injury (MI).
Methods: Ginkgolide Solid Dispersions (GKSD) were prepared with LMWC. Their properties were then characterized using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. pharmacokinetic studies were performed in rats, and the protective effect of GKSD on MI was investigated by western blotting and immunohistochemical analyses.
Results: Drug dissolution testing showed that GDSD were released at a significantly higher rate than ginkgolides, dissolved by alternative methods, suggesting that LMWC facilitates the release of ginkgolides. Differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy all showed that GKSD was amorphous. testing revealed larger AUC, higher C, and shorter T for GKSD compared to that in original ginkgolides. Myocardial injury was induced in rats with isoproterenol to test the protective effect of GKSD. GKSD alleviated MI and reduced myocardial fibrosis, as observed by Hematoxylin and Eosin staining. Compared with the crude drug group, the secretion of malonyl dialdehyde and nitric oxide and expression of NOX-2 and NOX-4 were lower. The activities of the cardiac marker enzymes SOD, CAT, GPX, GPX-1, and GSH were higher in GKSD-administered rats, indicating a beneficial effect of GKSD in eliminating free radicals during myocardial injury. Additionally, western blotting and immunohistochemical analysis showed that GKSD markedly reduced the expression of signaling proteins RHOA, ROCK1, ROCK2, and RAC1.
Conclusion: Solid dispersions prepared with low molecular weight chitosan improved the oral bioavailability of ginkgolide and enhanced its protective effect on myocardial injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1567201817666200704133702 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pneumology, Oncology and Allergology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland.
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA.
Cardiovascular diseases (CVDs) are the leading cause of death worldwide, and effectively repairing the heart following myocardial injuries remains a significant challenge. Research has increasingly shown that exosomes derived from mesenchymal stem cells (MSC-Exo) can ameliorate myocardial injuries and improve outcomes after such injuries. The therapeutic benefits of MSC-Exo are largely due to their capacity to deliver specific cargo, including microRNAs and proteins.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
Substantial loss of cardiomyocytes during heart attacks and onset of other cardiovascular diseases is a major cause of mortality. Preservation of cardiomyocytes during cardiac injury would be the most effective strategy to manage these diseases in clinic. However, there is no effective treatment strategy that is able to prevent cardiomyocyte loss.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Department Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara 06560, Turkey.
Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!