Hypoxia-induced downregulation of B-cell translocation gene 3 confers resistance to radiation therapy of colorectal cancer.

J Cancer Res Clin Oncol

Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China.

Published: October 2020

Background: Colorectal cancer (CRC) is now a major human cancer, and B-cell translocation gene 3 (BTG3) has been reported as a tumor-suppressor in CRC, but its upstream regulator has not been identified.

Methods: Endogenous expression levels of BTG3 were compared between normal colorectal cell line CCD-18Co and two CRC cell lines SW480 and HT29, as well as between CRC patient tumor and adjacent normal tissues. Analysis of BTG3 genomic region was performed which identified a putative hypoxia response element (HRE). Effects of hypoxia condition, BTG3 overexpression, and their combination on the radiation sensitivity of CRC cell lines were assessed.

Results: BTG3 was downregulated in CRC cell lines and patient tumor samples, via the HRE in its promoter region. Hypoxia and BTG3 overexpression could both induce radiation resistance in CRC cells. Combining hypoxia with BTG3 overexpression effectively rendered the resistance of CRC cells to radiation to a level lower than hypoxia alone and higher than normoxia alone, indicating the essential role of BTG3 in hypoxia-induced radiation resistance of CRC cells.

Conclusion: We therefore propose a novel signaling cascade involving hypoxia/BTG3 to be a potential risk factor for CRC patients undergoing radiation therapy, which could possibly serve as therapeutic targets among CRC patients with acquired radiotherapy resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-020-03307-6DOI Listing

Publication Analysis

Top Keywords

crc cell
12
cell lines
12
btg3 overexpression
12
resistance crc
12
crc
11
b-cell translocation
8
translocation gene
8
radiation therapy
8
colorectal cancer
8
btg3
8

Similar Publications

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Nonylphenol (NP) is a common environmental contaminant and endocrine disruptor. Our previous research demonstrated that NP could promote the proliferation and epithelial-mesenchymal transition (EMT) of colorectal cancer (CRC) cells; however, the specific mechanism remains unclear. miRNA sequencing revealed that NP upregulated the expression levels of microRNA(miR)-151a-3p in CRC.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) is linked to dismal prognosis, low overall survival, and is detected in up to 80% of patients at autopsy. Circulating tumor cells (CTCs) are the smallest functional units of cancer and precursors of fatal metastasis. We previously employed an unbiased multilevel approach to discover a unique ribosomal protein large/small subunits (RPL/RPS) CTC gene signature associated with MBM.

View Article and Find Full Text PDF

Ovarian cancer is a deadly gynecological disease with frequent recurrence. Current treatments for patients include platinum-based therapy regimens with PARP inhibitors specific for HR-deficient high-grade serous ovarian cancers (HGSOCs). Despite initial effectiveness, patients inevitably develop disease progression as tumor cells acquire resistance.

View Article and Find Full Text PDF

The presence of circulating tumor DNA (ctDNA) in patients with colorectal adenomas remains uncertain. Studies using tumor-agnostic approaches report ctDNA in 10-15% of patients, though with uncertainty as to whether the signal originates from the adenoma. To obtain an accurate estimate of the proportion of patients with ctDNA, a sensitive tumor-informed strategy is preferred, as it ensures the detected signal originates from the adenoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!