Halogen bonds are a highly directional class of intermolecular interactions widely employed in chemistry and chemical biology. This linear interaction is commonly viewed to be analogous to the hydrogen bond because hydrogen bonding models also intuitively describe the σ-symmetric component of halogen bonding. The possibility of π-covalency in a halogen bond is not contemplated in any known models. Here we present evidence of π-covalency being operative in halogen bonds formed between chloride and halogenated triphenylamine-based radical cations. We reach this conclusion through computational analysis of chlorine K-edge X-ray absorption spectra recorded on these halogen bonded pairs. In light of this result, we contend that halogen bonding is better described by analogy to metal coordination bonds rather than hydrogen bonds. Our revised description of the halogen bond suggests that these interactions could be employed to influence the electronic properties of conjugated molecules in unique ways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7335087 | PMC |
http://dx.doi.org/10.1038/s41467-020-17122-7 | DOI Listing |
IUCrJ
March 2025
Department of Chemistry, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy.
A detailed study of the X...
View Article and Find Full Text PDFChemphyschem
January 2025
Utah State University, Department of Chemistry and Biochemistry, 0300 Old Main Hill, 84322-0300, Logan, UNITED STATES OF AMERICA.
A halobenzene molecule contains several sites that are capable of acting in an electron-donating capacity within a H-bond. One set of such sites comprise the lone electron pairs of the halogen (X) atoms on the periphery of the ring. The π-electron system above the ring plane can also fulfill this function in many cases.
View Article and Find Full Text PDFChem Sci
January 2025
College of Chemistry and Chemical Engineering, Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University Shantou 515063 P. R. China
In the past few years, the direct activation of organohalides by ligated boryl radicals has emerged as a potential synthetic tool for cross-coupling reactions. In most existing methods, ligated boryl radicals are accessed from NHC-boranes or amine-boranes. In this work, we report a new photocatalytic platform by modular assembly of readily available amines and diboron esters to access a library of ligated boryl radicals for reaction screening, thus enabling the cross-coupling of organohalides and alkenes including both activated and unactivated ones for C(sp)-C(sp) bond formation by using the assembly of DABCO A1 and BNepB1.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, 88040-900 Florianópolis, SC, Brazil.
The present study elucidated the role of both hydrogen and halogen bonds, from an electronic structure perspective, in the anion recognition process by the [2]catenane () containing a moiety with hydrogen bond donors entangled with another macrocyclic halogen bond donor. Spherical and nonspherical anions have been employed. The roles of different σ-hole donors have also been considered.
View Article and Find Full Text PDFMolecules
January 2025
Instituto de Síntesis Química y Catálisis Homogénea, ISQCH (CSIC-Universidad de Zaragoza), Pedro Cerbuna 12, 50009 Zaragoza, Spain.
Orthopalladated derivatives from substituted phenylglycines [Pd(μ-Cl)(CHRC(R)(R)N(R)] () react with halogenating reagents (PhICl, Br, I) () to give the corresponding o-halogenated amino acids CH(X)RC(R)(R)N(R) (). The reaction is general and tolerates a variety of functional groups (R to R) at the aryl ring, the Cα, and the N atom. On the other hand, the reaction of [Pd(μ-Cl)(CHRC(R)(R)N(R)] () with PhI(OAc) in the presence of a variety of alcohols ROH () gives the o-alkoxylated phenylglycines CH(OR)RC(R)(R)N(R) (), also as a general process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!