Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors.

J Leukoc Biol

Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil.

Published: October 2020

Innovative immunotherapies based on immune checkpoint targeting antibodies and engineered T cells are transforming the way we approach cancer treatment. However, although these T cell centered strategies result in marked and durable responses in patients across many different tumor types, they provide therapeutic efficacy only in a proportion of patients. A major challenge of immuno-oncology is thereby to identify mechanisms responsible for resistance to cancer immunotherapy in order to overcome them via adapted strategies that will ultimately improve intrinsic efficacy and response rates. Here, we focus on the barriers that restrain the trafficking of chimeric antigen receptor (CAR)-expressing T cells to solid tumors. Upon infusion, CAR T cells need to home into malignant sites, navigate within complex tumor environments, form productive interactions with cancer cells, deliver their cytotoxic activities, and finally persist. We review the accumulating evidence that the microenvironment of solid tumors contains multiple obstacles that hinder CAR T cells in the dynamic steps underlying their trafficking. We focus on how these hurdles may in part account for the failure of CAR T cell clinical trials in human carcinomas. Given the engineered nature of CAR T cells and possibilities to modify the tumor environment, there are ample opportunities to augment CAR T cell ability to efficiently find and combat tumors. We present some of these strategies, which represent a dynamic field of research with high potential for clinical applicability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7586996PMC
http://dx.doi.org/10.1002/JLB.1MR0520-746RDOI Listing

Publication Analysis

Top Keywords

car cell
12
solid tumors
12
car cells
12
car
6
cells
6
surmounting obstacles
4
obstacles impede
4
impede effective
4
effective car
4
cell
4

Similar Publications

Donor-derived GD2-specific CAR T cells in relapsed or refractory neuroblastoma.

Nat Med

January 2025

Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.

Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading.

View Article and Find Full Text PDF

Background: Immune effector cell-associated neurotoxicity syndrome (ICANS) can be a severe, life-threatening toxicity following CAR T-cell therapy. While currently evaluated by the immune effector cell-associated encephalopathy (ICE) score, not all patients have changes in their ICE score and not all signs and symptoms of neurotoxicity are captured.

Methods: We conducted a prospective, single center cohort pilot study to evaluate a novel, rapid neurocognitive assessment tool (CART-NS) in detecting early, subtle neurotoxicity prior to the onset of ICANS and any deterioration in the ICE score.

View Article and Find Full Text PDF

The bottom line of CAR-T fungal risk: low incidence, high stakes and the need for individualised antifungal prophylaxis.

Transplant Cell Ther

January 2025

National Centre for Infectious in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!