Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bioengineered artificial blood vessels have been a major area of interest over the last decade. Of particular interest are small diameter vessels, as surgical options are currently limited. This study aimed to fabricate a small diameter, heterogeneous bilayer blood vessel-like construct in a single step with gelatin methacryloyl (GelMA) bioink using a 3D micro-extrusion bioprinter on a solid platform. GelMA was supplemented with Hyaluronic acid (HA), glycerol and gelatin to form a GelMA bioink with good printability, mechanical strength, and biocompatibility. Two separate concentrations of GelMA bioink with unique pore sizes were selected to fabricate a heterogeneous bilayer. A higher concentration of GelMA bioink (6% w/v GelMA, 2% gelatin, 0.3% w/v HA, 10% v/v glycerol) was used to load human umbilical vein endothelial cells (HUVECs) and form an inner, endothelial tissue layer. A lower concentration of GelMA bioink (4% w/v GelMA, 4% gelatin, 0.3% w/v HA, 10% v/v glycerol) was used to load smooth muscle cells (SMCs) and form an outer, muscular tissue layer. Bioprinted blood vessel-like grafts were then assessed for mechanical properties with Instron mechanical testing, and suture-ability, and for biological properties including viability, proliferation, and histological analysis. The resulting 20 mm long, 4.0 mm diameter lumen heterogeneous bilayer blood vessel-like construct closely mimics a native blood vessel and maintains high cell viability and proliferation. Our results represent a novel strategy for small diameter blood vessel biofabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5090/aba2b6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!