Exercise is a valuable tool in the prevention and treatment of cardiometabolic diseases like obesity and type 2 diabetes. Interestingly, endocannabinoids (eCBs), involved in a large range of physiological processes, are elevated with both obesity and acute exercise. In this review we outline this paradox overlap in the context of metabolic health and delineate the transcriptomic response of skeletal muscle to acute and chronic aerobic and resistance exercise in relation to the endocannabinoid system by utilizing a meta-analyses tool. We show that exercise modulates the expression of receptors and enzymes involved in the synthesis and breakdown of eCBs and discuss that eCBs possibly interfere with the anti-inflammatory effect of exercise. The endocannabinoid system (ECS), consisting of certain endogenous lipids (i.e. endocannabinoids), their receptors and associated metabolic enzymes, is involved in the modulation of a plethora of cognitive and physiological processes. Besides its role in the control of, for example, mood formation and immune responses, the ECS takes part in the regulation of appetite and energy metabolism [1,2]. In this current opinion review we will focus on the increased activity of the ECS that is associated with cardiometabolic diseases like obesity and type 2 diabetes (T2D), which paradoxically overlaps with the acute physiological response to exercise. After 1) outlining the role of the ECS in metabolic health, we will 2) discuss the link between endocannabinoid (eCB) action in skeletal muscle and cardiometabolic disease, 3) investigate how exercise modulates the gene expression of ECS components in skeletal muscle and 4) delineate the impact of the ECS on the immune response by skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coph.2020.05.003 | DOI Listing |
Appl Physiol Nutr Metab
January 2025
Nagoya University, Graduate School of Education and Human Development, Nagoya, Japan.
Skeletal muscles contain lipids inside and outside cells, namely intramyocellular lipids (IMCL) and extramyocellular lipids (EMCL), respectively; lipids have also been found to be interspersed between these muscles as adipose tissue, namely intermuscular adipose tissue (IMAT). Metabolized IMCL has been recognized as an important substrate for energy production and their metabolism is determined by the muscle oxidative capacity. Therefore, it has been speculated that muscle oxidative capacity is related to muscle lipid content.
View Article and Find Full Text PDFPLoS One
January 2025
Key Laboratory for Prevention and Control of Common Animal Diseases in General Higher Education Institutions of Heilongjiang Province, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
This study aims to provide a theoretical foundation for the future management of diabetes at various stages induced by a high-fat diet. Specifically, it seeks to determine the appropriate pharmacological interventions for each phase of diabetes development and the targeted therapeutic directions at different stages of diabetes progression. This investigation employed C57BL6 mice as experimental subjects, successfully establishing an insulin resistance model through a 12-week high-fat diet.
View Article and Find Full Text PDFPLoS One
January 2025
Graduate School of Education & Human Development, Nagoya University, Nagoya, Aichi, Japan.
The present study examined factors associated with trunk skeletal muscle thickness (MT, an index for the amount of skeletal muscle) and echo intensity (EI, an index for the content of non-contractile tissue, such as intramuscular adipose tissue) in young Japanese men and women in consideration of habitual dietary intake. Healthy men (n = 26) and women (n = 24) aged 20 to 26 were enrolled. Trunk MT and EI were evaluated using ultrasound imaging at the height of the 3rd lumbar vertebra.
View Article and Find Full Text PDFJ Physiol
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Short-term disuse leads to rapid declines in muscle mass and strength. These declines are driven by changes at all levels of the neuromuscular system; the brain, spinal cord and skeletal muscle. In addition to neural input from the central and peripheral nervous systems to the muscle, molecular factors originating in the muscle can be transported to the central nervous system.
View Article and Find Full Text PDFSkeletal Radiol
January 2025
Department of Radiology, NYU Langone Orthopedic Hospital, 301 East 17Th Street, 6Th Floor, Radiology , New York, NY, 10003, USA.
Objective: To evaluate the Neuropathy Score-Reporting and Data System (NS-RADS) MRI grading system in conjunction with electrodiagnostic (EDx) testing for radial neuropathy at the elbow.
Materials And Methods: Patients presenting between 2010 and 2023 with suspected radial neuropathy who underwent both EDx testing in the form of electromyography and nerve conduction studies and MRI within a 12-month period were evaluated. Three blinded radiologists used the NS-RADS grading system to evaluate nerve entrapment (E grades), muscle denervation (M grades) proximally within the supinator/extensor carpi radialis brevis (ECRB), and more distally within the forearm extensor muscles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!