Drug repurposing: Discovery of troxipide analogs as potent antitumor agents.

Eur J Med Chem

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China. Electronic address:

Published: September 2020

Drug repurposing plays a vital role in the discovery of undescribed bioactivities in clinical drugs. Based on drug repurposing strategy, we for the first time reported a novel series of troxipide analogs and then evaluated their antiproliferative activity against MCF-7, PC3, MGC-803, and PC9 cancer cell lines and WPMY-1, most of which showed obvious selectivity toward PC-3 over the other three cancer cell lines and WPMY-1. Compound 5q, especially, could effectively inhibit PC3 with an IC value of 0.91 μM, which exhibited around 53-fold selectivity toward WPMY-1. Data indicated that 5q effectively inhibited the colony formation, suppressed the cell migration, and induced G1/S phase arrest in PC3 cells. Also, compound 5q induced cell apoptosis by activating the two apoptotic signaling pathways in PC3 cells: death receptor-mediated extrinsic pathway and mitochondria-mediated intrinsic pathway. Compound 5q up-regulated the expression of both pro-apoptotic Bax and P53, while down-regulated anti-apoptotic Bcl-2 expression. Besides, compound 5q significantly increased the expression of cleaved caspase 3/9 and cleaved PARP. Therefore, the successful discovery of compound 5q may further validate the feasibility of this theory, which will encourage researchers to reveal undescribed bioactivities in traditional drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319647PMC
http://dx.doi.org/10.1016/j.ejmech.2020.112471DOI Listing

Publication Analysis

Top Keywords

drug repurposing
12
troxipide analogs
8
undescribed bioactivities
8
cancer cell
8
cell lines
8
lines wpmy-1
8
pc3 cells
8
compound
5
repurposing discovery
4
discovery troxipide
4

Similar Publications

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Target identification is crucial for drug screening and development because it can reveal the mechanism of drug action and ensure the reliability and accuracy of the results. Chemical biology, an interdisciplinary field combining chemistry and biology, can assist in this process by studying the interactions between active molecular compounds and proteins and their physiological effects. It can also help predict potential drug targets or candidates, develop new biomarker assays and diagnostic reagents, and evaluate the selectivity and range of active compounds to reduce the risk of off-target effects.

View Article and Find Full Text PDF

Repurposing of drugs through nanocarriers (NCs) based platforms has been a recent trend in drug delivery research. Various routine drugs are now being repurposed to treat challenging neurodegenerative disorders including Alzheimer disease (AD). AD, at present is one of the challenging neurodegenerative disorders characterized by extracellular accumulation of amyloid-β and intracellular accumulations of neurofibrillary tangles.

View Article and Find Full Text PDF

Rationale: One of the most debilitating drawbacks of cisplatin chemotherapy is neurotoxicity which elicits memory impairment and cognitive dysfunction (chemobrain). This is primarily triggered by oxidative stress and inflammation. Captopril, an angiotensin-converting enzyme inhibitor, has been reported as a neuroprotective agent owing to its antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

Orphan nuclear receptor NR2E3 is a new molecular vulnerability in solid tumors by activating p53.

Cell Death Dis

January 2025

Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, USA.

The orphan nuclear receptor NR2E3 has emerged as a potential tumor suppressor, yet its precise mechanisms in tumorigenesis require further investigation. Here, we demonstrate that the full-length protein isoform of NR2E3 instead of its short isoform activates wild-type p53 and is capable of rescuing certain p53 mutations in various cancer cell lines. Importantly, we observe a higher frequency of NR2E3 mutations in three solid tumors compared to the reference population, highlighting its potential significance in tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!