Tandem mass spectrometry-based proteotyping of microorganisms presents several advantages over whole-cell MALDI-TOF mass spectrometry: because a larger number of signals are recorded with better accuracy and precision, the approach allows for the identification of microorganisms at more resolved taxonomic levels, and can easily manage complex samples. Additionally, the use of SP3 paramagnetic beads for cell lysis and protein cleanup simplifies sample preparation for proteotyping. Based on these features, we have developed and tested a 96-well plate platform for high-throughput proteotyping of a large variety of bacteria. We evaluated the performance of the platform in terms of bacterial load and found no cross-contamination between wells. Likewise, phylopeptidomics analysis revealed no alteration in the relative quantifications of microorganisms. Finally, we applied this new format for rapid proteotyping of a large set of dental isolates using double-barrel chromatography coupled to tandem mass spectrometry, which maximizes the number of spectra per unit of time. The procedure allowed us to establish whether these isolates were pure strains or mixtures of strains and to identify the microorganisms at the most resolved taxonomic level. SIGNIFICANCE: The rapid and accurate identification of microorganisms is a clinical priority in medical diagnostics; however, specimens containing mixtures of microorganisms are difficult to analyze and the procedure is time-consuming. Tandem mass spectrometry proteotyping allows the fast identification of complex mixtures of microorganisms, known or unknown, and can also establish the biomass ratio of each component. We describe here a new workflow for preparing microbial samples in a 96-well-plate format for tandem mass spectrometry proteotyping and document its advantages and limitations. We demonstrate that this new format coupled to a highly efficient double-barrel LC-MS/MS system allows proteotyping of 96 isolates in 55 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2020.103887 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405.
Dysregulation of GABAergic inhibition is associated with pathological pain. Consequently, enhancement of GABAergic transmission represents a potential analgesic strategy. However, therapeutic potential of current GABA agonists and modulators is limited by unwanted side effects.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210.
The homo-dodecameric ring-shaped RNA binding attenuation protein (TRAP) from binds up to twelve tryptophan ligands (Trp) and becomes activated to bind a specific sequence in the 5' leader region of the operon mRNA, thereby downregulating biosynthesis of Trp. Thermodynamic measurements of Trp binding have revealed a range of cooperative behavior for different TRAP variants, even if the averaged apparent affinities for Trp have been found to be similar. Proximity between the ligand binding sites, and the ligand-coupled disorder-to-order transition has implicated nearest-neighbor interactions in cooperativity.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).
View Article and Find Full Text PDFSci Adv
January 2025
Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Chemistry, National Kaohsiung Normal University, Kaohsiung City, Taiwan.
Pyrethroids are synthetic chemicals that account for 16% of the international insecticide market and have been shown to be of varying toxicity to different species. There are various methods available for detecting pyrethroids in agricultural products, but these products must be pre-treated to remove interference from the food matrix, such as through dispersion liquid-liquid microextraction (DLLME). This study employed two experimental design methods to optimize the continuous and discontinuous experimental parameters of DLLME and investigated whether DLLME combined with GC-NICI-MS is effective for detecting pyrethroids in agricultural products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!