Magnetically-driven implantable pump for on-demand bolus infusion of short-acting glucagon-like peptide-1 receptor agonist.

J Control Release

Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea. Electronic address:

Published: September 2020

For type 2 diabetic patients, short acting glucagon-like peptide-1 receptor agonist (GLP-1 RA) is often prescribed with frequent needled injections. Long-acting GLP-1 RA for less frequent injections do not mimic physiologic secretion of GLP-1. Therefore, an implantable pump is proposed in this work, which can deliver a short-acting GLP-1 RA, exenatide, without needles and batteries. The implanted pump can infuse an accurate amount of exenatide bolus only when a noninvasive magnetic force is applied from outside the body. The pump includes a safety feature of patterned magnets for actuation to prevent accidental infusion possibly caused by a general household magnet. The reservoir for exenatide is made of a flexible biomaterial and thus, a negative pressure build-up in the reservoir can be prevented even after multiple actuations and almost all drug consumption (~ 94%). This allows a reproducible drug dose for a longer period after implantation, hence less frequent replenishment procedures. The pump is also equipped with an intermediate container with two distinct check-valves and thus, the reservoir of exenatide can be further separated and better prevented from infiltration of the bodily fluid surrounding the implanted pump. When tested in Goto-Kakizaki rats, the pump demonstrates the efficacy of exenatide similar to conventional subcutaneous injections. Therefore, the pump can be promising for patient-friendly, optimal delivery of short-acting GLP-1 RA that better follows the physiologic secretion profile of GLP-1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.06.022DOI Listing

Publication Analysis

Top Keywords

pump
8
implantable pump
8
glucagon-like peptide-1
8
peptide-1 receptor
8
receptor agonist
8
physiologic secretion
8
short-acting glp-1
8
implanted pump
8
reservoir exenatide
8
glp-1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!