Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The bacterial inactivation mechanisms by solar light and the photo-Fenton process is still a matter of debate. In this study, we bring evidence towards the elucidation of the mechanisms that govern photo-Fenton disinfection at near-neutral pH. With the use of porin-deficient and catalase over-producing E. coli strains, in conjunction with measurements of cell wall oxidation and permeability, we are able to i) highlight the role of the aforementioned components in bacterial inactivation and ii) localize the damages in the intracellular domain, despite the addition of the Fenton reagents in the bulk. We report that HO oxidizes cell walls but under light the process is of low significance; UVA initiated an intracellular oxidation process based on excess accumulated HO, while the UVA+HO and UVA+HO+Fe processes have the same effect with light, albeit enhanced, as shown by malondialdehyde (MDA) production and ONPG hydrolysis rates. Finally, compared to the UVA-assisted photo-Fenton process, its solar counterpart is enhanced by the direct UVB effects on bacterial DNA. In conclusion, we have sufficient evidence to postulate that the photo-Fenton process is intracellular and propose the pathways that form the integrated bacterial inactivation mechanism by photo-Fenton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2020.116049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!