AI Article Synopsis

Article Abstract

Seed germination and seedling establishment are important for the reproductive success of plants, but seeds and seedlings typically encounter constantly changing environmental conditions. By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors, the phytohormone abscisic acid (ABA) prevents premature germination and seedling growth under unfavorable conditions. However, little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted. Here, we report that ABA Signaling Terminator (ABT), a WD40 protein, efficiently switches off ABA signaling and is critical for seed germination and seedling establishment. ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner. Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA, whereas knockout of ABT has the opposite effect. We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins, interferes with the interaction between PYR1/PYL4 and ABI1/ABI2, and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4, thereby terminating ABA signaling. Taken together, our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2020.06.011DOI Listing

Publication Analysis

Top Keywords

seed germination
28
germination seedling
28
seedling establishment
20
aba signaling
20
aba
9
aba-mediated inhibition
8
inhibition seed
8
germination
8
signaling terminator
8
critical seed
8

Similar Publications

Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.

View Article and Find Full Text PDF

A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).

View Article and Find Full Text PDF

Nitro-fatty acids modulate germination onset through S-nitrosothiol metabolism.

Plant Physiol

January 2025

Group of Biochemistry and Cell Signalling in Nitric Oxide, University Institute for Research in Olive Groves and Olive Oils, Department of Experimental Biology, Faculty of Experimental Sciences, Campus "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.

-Nitro-fatty acids (NO2-FAs) have emerged as key components of nitric oxide (NO) signalling in eukaryotes. We previously described how nitro-linolenic acid (NO2-Ln), the major NO2-FA detected in plants, regulates S-nitrosoglutathione (GSNO) levels in Arabidopsis (Arabidopsis thaliana). However, the underlying molecular mechanisms remain undefined.

View Article and Find Full Text PDF

Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!