Condensin: The Little Motor Protein that Could.

Mol Cell

Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria. Electronic address:

Published: July 2020

Kong et al. (2020) present the low-resolution structure of the ATPɣS-bound human condensin I and II complexes and demonstrate that human condensins can extrude DNA loops in a symmetric and asymmetric fashion and compact nucleosome-bound DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2020.06.025DOI Listing

Publication Analysis

Top Keywords

condensin motor
4
motor protein
4
protein kong
4
kong et al
4
et al 2020
4
2020 low-resolution
4
low-resolution structure
4
structure atpɣs-bound
4
atpɣs-bound human
4
human condensin
4

Similar Publications

Chromatin is the complex of DNA and associated proteins found in the nuclei of living organisms. How it is organized is a major research field as it has implications for replication, repair, and gene expression. This review summarizes the current state of the chromatin organization field, with a special focus on chromatin motor complexes cohesin and condensin.

View Article and Find Full Text PDF

Interphase chromatin biophysics and mechanics: new perspectives and open questions.

Curr Opin Genet Dev

December 2024

Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3664 Laboratoire Dynamique du Noyau, CNRS UMR168 Laboratoire Physique des Cellules et Cancer, 75005 Paris, France. Electronic address:

The physical organization and properties of chromatin within the interphase nucleus are intimately linked to a wide range of functional DNA-based processes. In this context, interphase chromatin mechanics - that is, how chromatin, physically, responds to forces - is gaining increasing attention. Recent methodological advances for probing the force-response of chromatin in cellulo open new avenues for research, as well as new questions.

View Article and Find Full Text PDF

Molecular mechanism of condensin I activation by KIF4A.

EMBO J

December 2024

DNA Motors Group, MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0HS, UK.

During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail.

View Article and Find Full Text PDF

All eukaryotic SMC proteins induce a twist of -0.6 at each DNA loop extrusion step.

Sci Adv

December 2024

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, 2629HZ, Netherlands.

Eukaryotes carry three types of structural maintenance of chromosome (SMC) protein complexes, condensin, cohesin, and SMC5/6, which are ATP-dependent motor proteins that remodel the genome via DNA loop extrusion (LE). SMCs modulate DNA supercoiling but remains incompletely understood how this is achieved. Using a single-molecule magnetic tweezers assay that directly measures how much twist is induced by individual SMCs in each LE step, we demonstrate that all three SMC complexes induce the same large negative twist (i.

View Article and Find Full Text PDF

Force generation and resistance in human mitosis.

Biophys Rev

October 2024

Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

Article Synopsis
  • The study of chromosome segregation has progressed over time, primarily benefiting from advancements in microscopy, with the mitotic spindle being the main source of force generation.
  • The kinetochore serves as a crucial interface between microtubules and centromeric chromatin, involving proteins like cohesin and condensin to ensure accurate chromosome separation.
  • Current research estimates the forces needed for chromosome separation range from tens to hundreds of piconewtons, but measuring these forces accurately is challenged by existing techniques, though new methods could improve future studies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!