AI Article Synopsis

  • Pseudokinases, while lacking typical catalytic activity, are crucial signaling molecules, particularly in the context of Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which are vital for development.
  • Structural analysis revealed that these pseudokinases have a conserved inactive conformation and inaccessible ATP-binding pockets, suggesting they possess unique mechanisms of regulation and interaction.
  • Research identified ATP-competitive inhibitors for ROR1, indicating potential for new therapeutic approaches that target the conformational properties of pseudokinases involved in diseases, despite their lack of traditional catalytic functionality.

Article Abstract

Despite their apparent lack of catalytic activity, pseudokinases are essential signaling molecules. Here, we describe the structural and dynamic properties of pseudokinase domains from the Wnt-binding receptor tyrosine kinases (PTK7, ROR1, ROR2, and RYK), which play important roles in development. We determined structures of all pseudokinase domains in this family and found that they share a conserved inactive conformation in their activation loop that resembles the autoinhibited insulin receptor kinase (IRK). They also have inaccessible ATP-binding pockets, occluded by aromatic residues that mimic a cofactor-bound state. Structural comparisons revealed significant domain plasticity and alternative interactions that substitute for absent conserved motifs. The pseudokinases also showed dynamic properties that were strikingly similar to those of IRK. Despite the inaccessible ATP site, screening identified ATP-competitive type-II inhibitors for ROR1. Our results set the stage for an emerging therapeutic modality of "conformational disruptors" to inhibit or modulate non-catalytic functions of pseudokinases deregulated in disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543951PMC
http://dx.doi.org/10.1016/j.molcel.2020.06.018DOI Listing

Publication Analysis

Top Keywords

pseudokinase domains
12
receptor tyrosine
8
tyrosine kinases
8
dynamic properties
8
structural insights
4
insights pseudokinase
4
domains receptor
4
kinases despite
4
despite apparent
4
apparent lack
4

Similar Publications

Plant pathogens pose a continuous threat to global food production. Recent discoveries in plant immunity research unveiled a unique protein family characterized by an unusual resistance protein structure that combines two kinase domains. This study demonstrates the widespread occurrence of tandem kinase proteins (TKPs) across the plant kingdom.

View Article and Find Full Text PDF

Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Adv Biol Regul

December 2024

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.

View Article and Find Full Text PDF

Protein shapeshifting in necroptotic cell death signaling.

Trends Biochem Sci

December 2024

Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia. Electronic address:

Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is the most common cause of chronic liver diseases with its pathophysiological mechanism poorly understood. In this work, serological, histological, molecular biological, biochemical, and immunological methods were applied to explore the pathological significance and action of zinc finger protein 281 (ZFP281 in mouse, ZNF281 in human) and targeted strategies. We reported that ZFP281/ZNF281 abundance in hepatocytes was positively correlated with the progression of NASH.

View Article and Find Full Text PDF

Tyrosine kinase 2 inhibitors: Synthesis and applications in the treatment of autoimmune diseases.

Eur J Med Chem

February 2025

Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China. Electronic address:

Janus kinase (JAK), a class of non-receptor tyrosine kinases, are essential in modulating the cytokine signaling cascade of cytokines associated with immune responses. Despite their potential in the treatment of autoimmune diseases, JAK inhibitors are associated with safety concerns, regarding cytokine suppression and significant side effects. Tyrosine kinase 2 (TYK2), a prominent member of the JAK family, is central to the signaling of interleukins (ILs) and interferons (IFNs), such as IL-12, IL-23 and IFNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!