Three techniques for the measurement of bacterial numbers and biomass in the marine environment are described. Two are direct methods for counting bacteria. The first employs an epifluorescence microscope to view bacteria that have been concentrated on membrane filters and stained with acridine orange. The second uses a transmission electron microscope for observing replicas of bacteria that are concentrated on membrane filters. The other technique uses Limulus amebocyte lysate, an aqueous extract from the amebocytes of the horseshoe crab, Limulus polyphemus, to quantitate lipopolysaccharide (LPS) in seawater samples. The biomass of gram-negative (LPS containing) bacteria was shown to be related to the LPS content of the samples. A factor of 6.35 was determined for converting LPS to bacterial carbon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC170794 | PMC |
http://dx.doi.org/10.1128/aem.33.4.940-946.1977 | DOI Listing |
Biosystems
January 2025
Faculty of Engineering, Shizuoka University, Hamamatsu City, Shizuoka Prefecture, 432-8561, Japan. Electronic address:
A different perspective in metabolic ecology is presented using food web data, based on trophic compartments and communities in aquatic ecosystems (coastal areas, shelves and estuaries in marine ecosystems, and lake ecosystems), including primary producers (phytoplankton and aquatic plants). The relationships among the metabolic traits (biomass, respiration and production) in aquatic communities are expressed through power laws, hence, the value of one of the three metabolic traits provides the values of the other two. Noteworthily, these metabolic traits (biomass, respiration, production) are related to those of primary producers according to various power laws.
View Article and Find Full Text PDFMar Environ Res
January 2025
College of Environmental Sciences and Engineering, Dalian Maritime University, Dalian 116026, China. Electronic address:
Following the Deepwater Horizon oil spill event, the formation of marine oil snow (MOS) has attracted much attention from marine environmental scientists. This study investigates the crude oil dispersion as well as the MOS formation in the presence of Phaeodactylum tricornutum and Chaetoceros sp. through laboratory experiments.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
April 2024
CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms.
View Article and Find Full Text PDFCommun Biol
January 2025
Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Botany and Microbiology Department, Faculty of Science, King Saud University.
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!