Targeting NUPR1 for Cancer Treatment: A Risky Endeavor.

Curr Cancer Drug Targets

Egyptian Patent Office, Academy of Scientific Research and Technology (ASRT), 101 Kaser Al-Ainy Street, Cairo, Egypt.

Published: November 2021

NUPR1 is a transcription factor that has attracted great attention because of its various roles in cancer. Several studies were carried out to determine its molecular targets and mechanism of action to develop novel therapies against cancer. Here, we shed light on the role of NUPR1 in different types of cancer. NUPR1 regulates a complex network of pathways that may be affected by its silencing, which can cause varying effects. Its role in some types of cancer has been reported but remains incompletely understood, whereas its roles in other types of cancers have not been reported yet. Therefore, targeting NUPR1 for cancer treatment remains challenging and risky.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568009620666200703152523DOI Listing

Publication Analysis

Top Keywords

targeting nupr1
8
nupr1 cancer
8
cancer treatment
8
types cancer
8
cancer
6
treatment risky
4
risky endeavor
4
nupr1
4
endeavor nupr1
4
nupr1 transcription
4

Similar Publications

VAMP8 as a biomarker and potential therapeutic target for endothelial cell dysfunction in atherosclerosis.

Gene

January 2025

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China. Electronic address:

Background: Endothelial cell dysfunction has a critical role in the pathophysiology of atherosclerosis. This study aims to uncover pivotal genes and pathways linked to endothelial cell dysfunction in atherosclerosis, as well as to ascertain the assumed causal effects and potential mechanisms.

Methods: Datasets relevant to endothelial cell dysfunction in atherosclerosis were collected and divided into training and validation sets.

View Article and Find Full Text PDF

Dynamics of resistance to immunotherapy and TKI in patients with advanced renal cell carcinoma.

Cancer Treat Rev

January 2025

Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy. Electronic address:

Immune-based combinations are the cornerstone of the first-line treatment of metastatic renal cell carcinoma patients, leading to outstanding outcomes. Nevertheless, primary resistance and disease progression is a critical clinical challenge. To properly address this issue, it is pivotal to understand the mechanisms of resistance to immunotherapy and tyrosine kinase inhibitors, that tumor eventually develop under treatment.

View Article and Find Full Text PDF

Ageing is associated with a decline in the number and fitness of adult stem cells. Ageing-associated loss of stemness is posited to suppress tumorigenesis, but this hypothesis has not been tested in vivo. Here we use physiologically aged autochthonous genetically engineered mouse models and primary cells to demonstrate that ageing suppresses lung cancer initiation and progression by degrading the stemness of the alveolar cell of origin.

View Article and Find Full Text PDF

Development of an efficient NUPR1 inhibitor with anticancer activity.

Sci Rep

November 2024

Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.

Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel.

View Article and Find Full Text PDF
Article Synopsis
  • MYC-driven medulloblastomas are aggressive brain tumors in children with limited treatment options and poor outcomes.
  • This study explored the combination of EZH2 and PARP inhibitors, revealing that EZH2 inhibition enhances the sensitivity of these tumors to PARP inhibitors by promoting a faulty DNA repair process.
  • The promising results from both lab and animal models suggest that targeting EZH2 alongside PARP could offer a new treatment strategy for MYC-high medulloblastomas, and further research in clinical trials is needed.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!