Collagen IV is a component of the basement membrane (BM) that provides mechanical support for muscle fibers. In addition, transcription factor 4 (TCF4) is highly expressed in muscle connective tissue fibroblasts and regulates muscle regeneration. However, the expression of collagen IV and TCF4 (+) cells in response to exercise-induced muscle injury is not well known. Here, we investigated the expression and localization of collagen IV and TCF4 (+) cells during the recovery process after muscle injury induced by different exercise loads. Muscle injury was observed in the soleus muscle of young Wistar rats after 12 or 18 sets-downhill running (DR) on a treadmill. After running, the rats were permitted to recover for a period of 0.5 days, 2 days, or 7 days. Ectopic localization of collagen IV in injured muscle fibers was observed after DR, and the number increased at 0.5 days after 18 sets DR and at 2 days after 12 or 18 sets DR as compared to the number observed at baseline. BM disruption was observed after DR. TCF4 (+) cells appeared in the inside and around injured muscle fibers at 0.5 day of recovery. After 18 sets DR, TCF4 (+) cells were more abundant for a longer period than that observed after 12 sets DR. DR induces BM disruption accompanied by muscle fiber damage. It is possible that BM destruction may be accompanied by muscle damage and that TCF4 (+) cells contribute to muscle fiber and BM recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03008207.2020.1791839 | DOI Listing |
Med Oncol
December 2024
Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.
Hepatocellular carcinoma (HCC) is a highly malignant cancer and lacks effective therapeutic targets. The role of LIM/homeobox protein Lhx3 (LHX3) has been extensively studied in various tumor tissues, where it has been identified as a promoter of tumorigenesis and malignancy. However, the specific functional role and potential mechanism of LHX3 in human HCCs are not clearly clarified.
View Article and Find Full Text PDFJ Anim Sci
December 2024
School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
The rumen plays an essential role in the physiology and health of ruminants. The rumen undergoes substantial changes in size and function from birth to adulthood. The cellular and molecular mechanisms underlying these changes are not clear.
View Article and Find Full Text PDFInt J Biol Sci
December 2024
State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry & Molecular Biology, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
During cortical development, the differentiation potential of neural progenitor cells (NPCs) is one of the most critical steps in normal cortical formation and function. Defects in this process can lead to many brain disorders. MicroRNA dysregulation in the dorsolateral prefrontal cortex is associated with risk for a variety of developmental and psychiatric conditions.
View Article and Find Full Text PDFIndividuals with progressive liver failure are at a high risk of mortality without liver transplantation. However, our understanding of derailed regenerative responses in failing livers is limited. Here, we performed comprehensive multi-omic profiling of healthy and diseased human livers using bulk and single-nucleus RNA-plus ATAC-seq.
View Article and Find Full Text PDFExpansions and contractions of tandem DNA repeats are a source of genetic variation in human populations and in human tissues: some expanded repeats cause inherited disorders, and some are also somatically unstable. We analyzed DNA sequence data, derived from the blood cells of >700,000 participants in UK Biobank and the Research Program, and developed new computational approaches to recognize, measure and learn from DNA-repeat instability at 15 highly polymorphic CAG-repeat loci. We found that expansion and contraction rates varied widely across these 15 loci, even for alleles of the same length; repeats at different loci also exhibited widely variable relative propensities to mutate in the germline versus the blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!