Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Activation of the nuclear factor (erythroid-derived 2)-like 2 (NFE2L2 or NRF2) transcription factor is a critical and evolutionarily conserved cellular response to oxidative stress, metabolic stress, and xenobiotic insult. Deficiency of NRF2 results in hypersensitivity to a variety of stressors, whereas its aberrant activation contributes to several cancer types, most commonly squamous cell carcinomas of the esophagus, oral cavity, bladder, and lung. Between 10% and 35% of patients with squamous cell carcinomas display hyperactive NRF2 signaling, harboring activating mutations and copy number amplifications of the NFE2L2 oncogene or inactivating mutations or deletions of KEAP1 or CUL3, the proteins of which co-complex to ubiquitylate and degrade NRF2 protein. To better understand the role of NRF2 in tumorigenesis and more broadly in development, we engineered the endogenous Nfe2l2 genomic locus to create a conditional mutant LSL-Nrf2 mouse model. The E79Q mutation, one of the most commonly observed NRF2-activating mutations in human squamous cancers, codes for a mutant protein that does not undergo KEAP1/CUL3-dependent degradation, resulting in its constitutive activity. Expression of NRF2 E79Q protein in keratin 14 (KRT14)-positive murine tissues resulted in hyperplasia of squamous cell tissues of the tongue, forestomach, and esophagus, a stunted body axis, decreased weight, and decreased visceral adipose depots. RNA-seq profiling and follow-up validation studies of cultured NRF2 murine esophageal epithelial cells revealed known and novel NRF2-regulated transcriptional programs, including genes associated with squamous cell carcinoma (e.g. Myc), lipid and cellular metabolism (Hk2, Ppard), and growth factors (Areg, Bmp6, Vegfa). These data suggest that in addition to decreasing adipogenesis, KRT14-restricted NRF2 activation drives hyperplasia of the esophagus, forestomach, and tongue, but not formation of squamous cell carcinoma. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511428 | PMC |
http://dx.doi.org/10.1002/path.5504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!