Microspheres containing radioactive holmium-acetylacetonate are employed in emerging radionuclide therapies for the treatment of malignancies. At the molecular level, details on the coordination geometries of the Ho complexes are however elusive. Infrared ion spectroscopy (IRIS) was used to characterize several Ho-acetylacetonate complexes derived from non-radioactive microspheres. The coordination geometry of four distinct ionic complexes were fully assigned by comparison of their measured IR spectra with spectra calculated at the density functional theory (DFT) level. The coordination of each acetylacetonate ligand is dependent on the presence of other ligands, revealing an asymmetric chelation motif in some of the complexes. A fifth, previously unknown constituent of the microspheres was identified as a coordination complex containing an acetic acid ligand. These results pave the way for IRIS-based identification of microsphere constituents upon neutron activation of the metal center.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01890bDOI Listing

Publication Analysis

Top Keywords

complexes derived
8
infrared ion
8
ion spectroscopy
8
complexes
5
characterization holmiumiii-acetylacetonate
4
holmiumiii-acetylacetonate complexes
4
derived therapeutic
4
microspheres
4
therapeutic microspheres
4
microspheres infrared
4

Similar Publications

Synthesis and Anticancer Studies of Pt(II) Complex Derived from 4-Phenylthiosemicarbazone.

Chem Biodivers

January 2025

Guangxi Science and Technology Normal University, School of food biochemical engineering, Tiebei road 966, 546199, Laibin, CHINA.

Although cisplatin is widely used as a first-line chemotherapy agent, it has significant side effects. Herein, we synthesized a Pt(II) complex (Pt1) derived from o-vanillin-4-phenylthiosemicarbazone ligand, and confirmed its crystal structure by X-ray crystallography. Complex Pt1 exhibited potent anticancer activity against various tested cancer cell lines, with particular efficacy against HepG-2 cells.

View Article and Find Full Text PDF

Progress towards effective vaccines for Chlamydia trachomatis.

Curr Opin Infect Dis

February 2025

Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico, USA.

Purpose Of Review: Effective vaccines to prevent sexually transmitted Chlamydia trachomatis (Ct) infection have eluded researchers for decades. However, recent studies of a promising vaccine in human trials, and emerging understanding of the complexity of the natural immune response to infection have provided hope for the eventual approval of a vaccine. This review highlights recent progress toward developing effective vaccines for Ct.

View Article and Find Full Text PDF

Bisquinoline-based fluorescent cadmium sensors.

Dalton Trans

January 2025

Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan.

Rational molecular design afforded fluorescent Cd sensors based on bisquinoline derivatives. Introduction of three methoxy groups at the 5,6,7-positions of the quinoline rings of BQDMEN (,'-bis(2-quinolylmethyl)-,'-dimethylethylenediamine) resulted in the reversal of metal ion selectivity in fluorescence enhancement from zinc to cadmium. Introduction of bulky alkyl groups and an ,-bis(2-quinolylmethyl)amine structure, as well as replacement of one of the two tertiary amine binding sites with an oxygen atom and the use of a 1,2-phenylene backbone significantly improved the Cd specificity.

View Article and Find Full Text PDF

This study introduces a novel method for functionalizing natural asphalt, presenting new opportunities for upgrading asphaltenes from road to a catalyst. The process utilizes a metal-free sonobromination technique in acetic acid to incorporate carbon-halogen substituents onto natural asphalt. These sites are then targeted by nucleophilic substitution with diethanolamine, followed by complexation with Pd(0) to create a unique palladium complex grafted onto natural asphalt.

View Article and Find Full Text PDF

Aims: This study focuses on the synthesis and characterization of novel sitagliptin derivatives, aiming to develop potent, orally active anti-diabetic agents with minimal side effects for the management of type 2 diabetes mellitus. Copper (II) (SCu1-SCu9) and zinc (II) (SZn1-SZn9) metal complexes of sitagliptin-based derivatives were synthesized via a template reaction.

Material & Method: The synthesized complexes were comprehensively characterized using elemental analysis, FTIR, UV-Vis, 1 h NMR, and 13C NMR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!